科目:微積分【化學系二年級、物理系二年級、電機系二年級、機電系二年級、海工系二年級】

共十題,每題10分。答題時,每題都必須寫下題號與詳細步驟。請依題號順序作答,不會作答題目請寫下題號並留空白。

- 1. Suppose that $f(x) = \frac{2+x}{1+x-6x^2}$. Find a closed form for $f^{(n)}(0), n = 1, 2, \ldots$
- 2. A ladder 8 m long leans against a wall 4 m high. The lower end of the ladder is pulled away from the wall at a rate of 2 m/sec. How fast is the angle between the top of the ladder and the wall changing when the angle is $60^{\circ} = \pi/3$ radians?
- 3. Compute $\lim_{n\to\infty} \sum_{k=1}^n \frac{n}{k^2+n^2}$.
- 4. The base of a certain solid is the circular disk $x^2 + y^2 \le 4$ in the xy-plane. Each plane perpendicular to the x-axis cuts the solid in an equilateral triangle. Find the volume of the solid.
- 5. Compute $\int \frac{x+8}{x^2+6x+12} dx$.
- 6. Evaluate

$$\int_0^{\pi/2} \frac{dx}{1 + (\tan x)^{\sqrt{2}}}.$$

- 7. Find the area inside the circle $r = 5\sin\theta$ and outside the limacon $r = 2 + \sin\theta$.
- 8. Evaluate

$$\lim_{x\to\infty} \left(\frac{1}{x}\frac{a^x-1}{a-1}\right)^{1/x}, \quad \text{where } a>0, a\neq 1.$$

9. Evaluate

$$\frac{1^2}{0!} + \frac{2^2}{1!} + \frac{3^2}{2!} + \frac{4^2}{3!} + \cdots$$

10. Find the volume of the solid bounded by xy-plane, the cylinder $x^2+y^2=4$, and the paraboloid $z=2(x^2+y^2)$.

科目:普通物理[化學系二年級、物理系二年級、電機系二年級、機電系二年級、海工系二年級]

一、選擇題、共有二十五題、每題三分

1. Two boys, with masses of 40 kg and 60 kg, respectively, stand on a horizontal frictionless surface holding the ends of a light 10-m long rod. The boys pull themselves together along the rod. When they meet the 40-kg boy will have moved what distance?

A. 4m B. 5m C. 6m D. 10m

E. A distance that cannot be known unless the forces the boys exert are given

2. For a wheel spinning with constant angular acceleration on an axis through its center, the ratio of the speed of a point on the rim to the speed of a point halfway between the center and the rim is:

A. 1 B. 2 C. 1/2 D. 4 E. 1/4

3. A solid uniform sphere of radius R and mass M has a rotational inertia about a diameter that is given by (2/5)MR². A light string of length 2R is attached to the surface and used to suspend the sphere from the ceiling. Its rotational inertia about the point of attachment at the ceiling is:

A. (2/5)MR² B. 4MR² C. (7/5)MR² D. (22/5)MR² E. (47/5)MR²

- 4. A pulley with radius R and rotational inertia I is free to rotate on a horizontal fixed axis through its center. A string passes over the pulley. A block of mass m₁ is attached to one end and a block of mass m₂ is attached to the other. At one time the block with mass m₁ is moving downward with speed ν. If the string does not slip on the pulley, the magnitude of the total angular momentum, about the pulley center, of the blocks and pulley, considered as a system, is given by:
 A. (m₁ m₂) ν R + I ν / R B. (m₁ + m₂) ν R + I ν / R C. (m₁ m₂) ν R I ν / R D. (m₁ + m₂) ν R I ν / R E. none of the above
- 5. Two objects with masses of m1 and m2 have the same kinetic energy and are both moving to the right. The same constant force \bar{F} is applied to the left to both masses. If $m_1 = 4m_2$, the ratio of the stopping distance of m_1 to that of m_2 is:

 A. 1:4 B. 4:1 C. 1:2 D. 2:1 E. 1:1
- 6. A Boston Red Sox baseball player catches a ball of mass m that is moving toward him with speed v. While bringing the ball to rest, his hand moves back a distance d. Assuming constant deceleration, the horizontal force exerted on the ball by his hand is:

科目:普通物理【化學系二年級、物理系二年級、電機系二年級、機電系二年級、海工系二年級】

A. mv/d B. mvd C. mv^2/d D. 2mv/d E. $mv^2/(2d)$

7. A ball of mass m, at one end of a string of length L, rotates in a vertical circle just fast enough to prevent the string from going slack at the top of the circle. The speed of the ball at the bottom of the circle is:

A. $\sqrt{2gL}$ B. $\sqrt{3gL}$ C. $\sqrt{4gL}$ D. $\sqrt{5gL}$ E. $\sqrt{7gL}$

8. A block of mass m is initially moving to the right on a horizontal frictionless surface at a speed v. It then compresses a spring of spring constant k. At the instant when the kinetic energy of the block is equal to the potential energy of the spring, the spring is compressed a distance of:

A. $v\sqrt{m/2k}$ B. $(1/2)mv^2$ C. $(1/4)mv^2$ D. $mv^2/4k$ E. $(1/4)\sqrt{mv/k}$

- 9. As a block slides a distance d down an incline, the incline exerts a constant frictional force of magnitude f on the block. The quantify fd gives the magnitude of:
 - A. the work done by the frictional force
 - B. the change in the internal energy of the block
 - C. the change in the internal energy of the block-incline system
 - D. the change in the mechanical energy of the block-Earth system
 - E. the change in the kinetic energy of the block
- 10. A spherical shell has inner radius R₁, outer radius R₂, and mass M, distributed uniformly throughout the shell. The magnitude of the gravitational force exerted on the shell by a point particle of mass m located a distance d from the center, outside the inner radius and inside the outer radius, is:

A. 0 B. GMm/d^2 C. $GMm/(R_2^3 - d^3)$ D. $GMm(d^3 - R_1^3)/d^2(R_2^3 - R_1^3)$ E. $GMm/(d^3 - R_1^3)$

11. A 0.25-kg block oscillates on the end of the spring with a spring constant of 200N/m. If the oscillation is started by elongating the spring 0.15m and giving the block a speed of 3.0m/s, then the maximum speed of the block is:

科目:普通物理【化學系二年級、物理系二年級、電機系二年級、機電系二年級、海工系二年級】

A. 0.13m/s B. 0.18m/s C. 3.7m/s D. 5.2m/s E. 13m/s

- 12. Two small charged objects attract each other with a force F when separated by a distance d. If the charge on each object is reduced to one-fourth of its original value and the distance between them is reduced to d/2 the force becomes:
 A. F/16 B. F/8 C. F/4 D. F/2 E. F
- 13. Positive charge Q is placed on a conducting spherical shell with inner radius R₁ and outer radius R₂. A point charge q is placed at the center of the cavity. The magnitude of the electric field at a point outside the shell, a distance r from the center, is:

A.
$$Q/4\pi\varepsilon_0 R_1^2$$
 B. $Q/4\pi\varepsilon_0 (R_1^2 - r^2)$ C. $q/4\pi\varepsilon_0 r^2$

D.
$$(q+Q)/4\pi\varepsilon_0 r^2$$
 E. $(q+Q)/4\pi\varepsilon_0 (R_1^2-r^2)$

- 14. Positive charge Q is distributed uniformly throughout an insulating sphere of radius R, centered at the origin. A particle with positive charge Q is placed at x = 2R on the x axis. The magnitude of the electric field at x = R/2 on the x axis is: A. $Q/4\pi\epsilon_0R^2$ B. $Q/8\pi\epsilon_0R^2$ C. $Q/72\pi\epsilon_0R^2$ D. $17Q/72\pi\epsilon_0R^2$ E. none of these
- 15. When an external electric field is applied to an insulator with dielectric constant κ, the magnitude of the total electric field in the insulator is proportional to:
 A. κ B. 1 /κ C. κ 1 D. 1 1 /κ E. 1 + 1 /κ
- 16. The capacitance of a spherical capacitor with inner radius a and outer radius b is proportional to:

A.
$$a / b$$
 B. $b - a$ C. $b^2 - a^2$ D. $ab / (b - a)$ E. $ab / (b^2 - a^2)$

- 17. Resistor 1 has twice the resistance of resistor 2. They are connected in parallel to a battery. The ratio of the thermal energy generation rate in 1 to that in 2 is:

 A. 1:4 B. 1:2 C. 1:1 D. 2:1 E. 4:1
- 18. Electrons (mass m, charge -e) are accelerated from rest through a potential difference V and are then deflected by a magnetic field \bar{B} that is perpendicular to their velocity. The radius of the resulting electron trajectory is:

A.
$$(\sqrt{2eV/m})/B$$
 B. $B(\sqrt{2eV})/m$ C. $(\sqrt{2mV/e})/B$ 【背面選有試題】

科目:普通物理[化學系二年級、物理系二年級、電機系二年級、機電系二年級、海工系二年級 # 5 頁 8 4 頁

- D. $B(\sqrt{2mV})/e$ E. none of these
- 19. An electron is launched with velocity \vec{v} in a uniform magnetic field \vec{B} . The angle θ between \vec{v} and \vec{B} is between 0 and 90°. As a result, the electron follows a helix, its velocity vector \vec{v} returning to its initial value in a time interval of:

A. $2\pi m / eB$ B. $2\pi mv / eB$ C. $2\pi mv \sin\theta / eB$

- D. $2\pi mv \cos\theta / eB$ E. none of these
- 20. Two parallel long wires carry the same current and repel each other with a force F per unit length. If both these currents are doubled and the wire separation tripled, the force per unit length becomes:

A. 2F/9 B. 4F/9 C. 2F/3 D. 4F/3 E. 6F

21. You push a permanent magnet with its north pole away from you toward a loop of conducting wire in front of you. Before the north pole enters the loop the current in the loop is:

A. zero B. clockwise C. counterclockwise D. to your left E. to your right

22. An electron traveling with speed v around a circle of radius r is equivalent to a current of:

A. evr/2 B. ev/r C. $ev/2\pi r$ D. $2\pi er/v$ E. $2\pi ev/r$

23. The total energy in an LC circuit is 5.0×10^{-6} J. If L = 25 mH the maximum current is:

A. 10mA B. 14mA C. 20mA D. 28mA E. 40mA

24. An RLC series circuit has $R = 4\Omega$, $X_C = 3\Omega$, and $X_L = 6\Omega$. The impedance of this circuit is:

A. 5Ω B. 7Ω C. 9.8Ω D. 13Ω E. 7.8Ω

25. An electromagnetic wave is traveling in the positive x direction with its electric field along the z axis and its magnetic field along the y axis. The fields are related by:

A. $\partial E / \partial x = \mu_0 \epsilon_0 \partial B / \partial x$ B. $\partial E / \partial x = \mu_0 \epsilon_0 \partial B / \partial t$ C. $\partial B / \partial x = \mu_0 \epsilon_0 \partial E / \partial x$ D. $\partial B / \partial x = \mu_0 \epsilon_0 \partial E / \partial t$ E. $\partial B / \partial x = -\mu_0 \epsilon_0 \partial E / \partial t$

科目:普通物理[化學系二年級、物理系二年級、電機系二年級、機電系二年級、海工系二年級]

二、計算題,共二十五分

1. A block of mass m is attached to a vertical spring via a string that hangs over a pulley (I=MR²/2) of mass M and radius R, The string doesn't slip. Find the angular frequency of oscillation when the block is pulled from the equilibrium position downward and released. (10%)

- A capacitor consists of two long concentric metal cylinders of length L with the line charge density λ. The inner and outer cylinders have radii a and b, respectively.
 - (a) Find the capacitance in this cylindrical capacitor.
 - (b) Find the energy stored in this cylindrical capacitor in terms of line charge density. (15%)

科目:普通化學【化學系二年級】

共 / 頁第 / 頁

	shape and	are not apprecia	ibly		
	compressible incompressible				
C) sharp, con					
	ncompressible				
E) definite, co					
, , , , , , , ,					
2) The symbol for	the element potassiur	m is			
A) P	B) Ca	C) S	D) Pt	E) K	
	of K is the				
A) 29	B) 290	C) 276	D) 17	E) 33	5 to estab seetW (III
4) sign	ificant figures should	he retained in t	he result of the follo	note (fi	
		. Do returned in t			
	- 2.6) × 10 ⁴				
A) 1	B) 2	C) 3	D) 4	E) 5	
5) Which of the fol	lowing are strong ele	ctrolytes?			
		KC1			
A) HCl, HC ₂ 1	H ₃ O ₂ , KCl				
B) HCl, NH ₃ ,	. KCI				
C) HCl, KCl					
D) HCl, HC21	H ₃ O ₂ , NH ₃ , KCl				
	, KCl				15) The Evertenius
6) When H ₂ SO ₄ is	neutralized by NaOF	I in aqueous sol	ution, the net ionic e	equation is	
A) H+ (aq) +	OH- (aq) → H ₂ O (1)			C) decreims
B) SO ₄ 2- (aq)	+ 2Na+ (aq) - Na	2SO ₄ (aq)			
C) SO ₄ 2- (aq)	+ 2Na+ (aq) → Na	2SO ₄ (s)			
D) 2H+ (aq) +	2NaOH (aq) → 2H	20 (l) + 2Na+ (aq)		
E) H ₂ SO ₄ (aq) + 2OH- (aq) → 2H	H ₂ O (1) + SO ₄ ² ·	- (aq)		
-			- authorized		
7) Which of the fol HI , HNO ₃	llowing are strong ac	ids?			
A) HI, HNO	3,111,1101				
B) HF, HBr	IE LID-				
C) HNO3, H					
D) HI, HF, H					
E) HI, HNO	3, HBr				
8) Of the following	r elements				
	g elements,				
A) oxygen	B) aluminum	C) fluorii	ne D) nitro	gen E) go	ld

科目:普通化學【化學系二年級】

共 7頁第2頁

was		te endpoint of the fitr	ation. The concentra	tion (M) of the acid
A) 0.0051	B) 0.102	C) 0.0102	D) 0.227	E) 0.0204
10) Of the followin	g,radiatio	on has the shortest wa	velength.	
A) microway				
B) ultraviole	t			
C) radio				
D) X-ray				
E) infrared				
11) What color of v	isible light has the lon	gest wavelength	?	
A) yellow	B) blue	C) green	D) violet	E) red
12) There are	orbitals in the s	econd shell.		
A) 1	B) 2	C) 4	D) 8	E) 9
13) How many quar	ntum numbers are nec	cessary to designate a	particular electron in	n an atom
? A) 4	B) 5	C) 1		
, .	2) 0	C) 1	D) 2	E) 3
14) The largest prin	cipal quantum numbe	r in the ground state	electron configuratio	n of cobalt is
43.2	-			
A) 2	B) 3	C) 4	D) 7	E) 9
15) The first ionizati	on energies of the eler	nentsas y	you go from left to ri	zht across a neriod
15) The first ionizati	on energies of the eler	nentsas y	you go from left to ri	zht across a neriod
15) The first ionizati of the periodic ta	on energies of the eler ble, and a crease	nentsas y	you go from left to ri	zht across a neriod
15) The first ionizati of the periodic ta A) increase, in	on energies of the eler ble, and a crease ecrease	nentsas y	you go from left to ri	zht across a neriod
15) The first ionizati of the periodic ta A) increase, in B) increase, de	on energies of the eler ble, anda crease ecrease	nentsas y	you go from left to ri	zht across a neriod
15) The first ionizati of the periodic ta A) increase, in B) increase, de C) decrease, ir D) decrease, de	on energies of the eler ble, anda crease ecrease	nentsas y	you go from left to ri	zht across a neriod
15) The first ionizati of the periodic ta A) increase, in B) increase, de C) decrease, ir D) decrease, de E) are complete 16) In general, as you (1) the atomic rate (2) the electron a	on energies of the eler ble, anda crease ecrease ecrease tely unpredictable a go across a period in dius; ffinity becomes;	nents as y as you go from the bot the periodic table fro	you go from left to ri	zht across a neriod
15) The first ionizati of the periodic ta A) increase, in B) increase, de C) decrease, ir D) decrease, de E) are complete 16) In general, as you (1) the atomic rat (2) the electron a (3) the first ionization	on energies of the eler ble, and a crease ecrease ecrea	nents as y is you go from the bot the periodic table fro negative; and	you go from left to ri	zht across a neriod
15) The first ionizati of the periodic ta A) increase, in B) increase, de C) decrease, ir D) decrease, de E) are complet 16) In general, as you (1) the atomic rat (2) the electron a (3) the first ioniz: A) increases, ir	on energies of the eler ble, anda crease ecrease ecrease tely unpredictable a go across a period in dius; ffinity becomes acreasingly, decreases	nents as y is you go from the bot the periodic table fro negative; and	you go from left to ri	zht across a neriod
15) The first ionizati of the periodic ta A) increase, in B) increase, de C) decrease, ir D) decrease, de E) are complete 16) In general, as you (1) the atomic rate (2) the electron a (3) the first ionize A) increases, ir B) increases, ir	on energies of the eler ble, anda crease ecrease ecrease tely unpredictable a go across a period in dius; ffinity becomes ation energy acreasingly, decreases acreasingly, increases	nents as y is you go from the both the periodic table fro negative; and	you go from left to ri	zht across a neriod
15) The first ionizati of the periodic ta A) increase, in B) increase, de C) decrease, ir D) decrease, de E) are complete 16) In general, as you (1) the atomic rat (2) the electron a (3) the first ioniz A) increases, ir B) increases, ir C) decreases, d	on energies of the eler ble, anda crease ecrease ecrease tely unpredictable a go across a period in dius; ffinity becomes acreasingly, decreases acreasingly, increases	nents as y is you go from the both the periodic table fro negative; and	you go from left to ri	zht across a neriod
15) The first ionizati of the periodic ta A) increase, in B) increase, de C) decrease, ir D) decrease, de E) are complete [16] In general, as you (1) the atomic rad (2) the electron a (3) the first ioniza A) increases, ir B) increases, ir C) decreases, decreases, decreases, decreases, in D) decreases, ir	on energies of the eler ble, anda crease ecrease ecrease tely unpredictable a go across a period in dius; ffinity becomes ation energy acreasingly, decreases acreasingly, increases	nents as you go from the both the periodic table from the periodic tabl	you go from left to ri	zht across a neriod
15) The first ionizati of the periodic ta A) increase, in B) increase, de C) decrease, ir D) decrease, de E) are complete (16) In general, as you (1) the atomic rate (2) the electron a (3) the first ionize A) increases, ir B) increases, ir C) decreases, de D) decreases, in E) decreases, in E) decreases, in	on energies of the elerable, anda crease ecrease ecrease ecrease elely unpredictable a go across a period in elius; ffinity becomes ecreasingly, decreases ecreasingly, increases ecreasingly, decreases ecreasingly, decreases ecreasingly, decreases	nents as y as you go from the both the periodic table from the periodic	you go from left to right to make to the top of a g	ght across a period croup in the table.
15) The first ionizati of the periodic ta A) increase, in B) increase, de C) decrease, ir D) decrease, de E) are complete (16) In general, as you (1) the atomic rate (2) the electron a (3) the first ionize A) increases, ir B) increases, ir C) decreases, de D) decreases, in E) decreases, in E) decreases, in	on energies of the eler ble, anda crease ecrease ecrease tely unpredictable a go across a period in dius; ffinity becomes acreasingly, decreases acreasingly, increases ecreasingly, increases ecreasingly, increases	nents as y as you go from the both the periodic table from the periodic	you go from left to right to make to the top of a g	ght across a period croup in the table.
15) The first ionizati of the periodic ta A) increase, in B) increase, de C) decrease, ir D) decrease, de E) are complete (16) In general, as you (1) the atomic rai (2) the electron a (3) the first ioniz. A) increases, ir B) increases, ir C) decreases, in E) decreases, in E) decreases, ir E) decreases, ir	on energies of the elerable, anda crease ecrease ecrease ecrease elely unpredictable a go across a period in elius; ffinity becomes ecreasingly, decreases ecreasingly, increases ecreasingly, decreases ecreasingly, decreases ecreasingly, decreases	nents as y as you go from the both the periodic table from the periodic	you go from left to right to make to the top of a g	ght across a period croup in the table.
15) The first ionizati of the periodic ta A) increase, in B) increase, de C) decrease, ir D) decrease, de E) are complet 16) In general, as you (1) the atomic rad (2) the electron a (3) the first ioniza A) increases, ir B) increases, ir C) decreases, de D) decreases, in E) decreases, in E) decreases, in (17) Which alkaline ear A) Ba	on energies of the elerable, anda crease ecrease ecrease ecrease elely unpredictable a go across a period in elius; ffinity becomes ecreasingly, decreases ecreasingly, increases ecreasingly, decreases ecreasingly, decreases ecreasingly, decreases	nents as y as you go from the both the periodic table from the periodic	you go from left to right to make to the top of a g	ght across a period croup in the table.
15) The first ionizati of the periodic ta A) increase, in B) increase, de C) decrease, ir D) decrease, de E) are complete [16] In general, as you (1) the atomic rai (2) the electron a (3) the first ioniz. A) increases, ir B) increases, ir C) decreases, in E) Be	on energies of the elerable, anda crease ecrease ecrease ecrease elely unpredictable a go across a period in elius; ffinity becomes ecreasingly, decreases ecreasingly, increases ecreasingly, decreases ecreasingly, decreases ecreasingly, decreases	nents as y as you go from the both the periodic table from the periodic	you go from left to right to make to the top of a g	ght across a period croup in the table.

科目:普通化學【化學系二年級】

共刀頁第3頁

A) water				
B) hydrogen	gas			
C) a base	a calt			
D) water and E) an acid	a sait			
D, an acia				
19) Which noruneta	ıl exists as a diatomi	c solid?		
A) boron				
B) phosphore	us			
C) iodine				
D) antimony				
E) bromine				
?(1) Based on the oct	et rule, phosphorus	mont librate (
A) P ⁵⁺	B) P+			
71) 1	<i>b) I</i> ·	C) P3-	D) P3+	E) P ⁵ -
!1) For a given arrai	ngement of ions, the	e lattice energy incre	eases as ionic radius	and as ionic
charge	_ ·	<u> </u>	_	und as folde
A) decreases,				
B) decreases,				
C) increases, c				
D) increases, i				
E) This canno	t be predicted.			
2) Elements from o	pposite sides of the	periodic table tend t	to form	
A) covalent co				·
B) homonucle	ar diatomic compou	ınds		
C) compounds	that are gaseous at	room temperature		
	mpounds that are g	•	perature	
E) ionic compo				
3) The ability of an a	atom in a molecule t	to attract electrons is	s best quantified by th	_
A) diamagnetis		o attract electrons is	s best quantined by th	e
B) electronega				
C) first ionizati	•			
	nge-to-mass ratio			
E) paramagnet				
) In the resonance f	orm of ozone show	n below, the formal	charge on the central	oxygen atom is
·				
0 = 0	·· - 0:			
.,	**			
A) -1	B) +2	C) +1	D) 0	E) -2
,	- / -	-, -	2,0	£) 2

科目	:	普:	通人	と 學		الم	學系	-	平	级	1
----	---	----	----	-----	--	-----	----	---	---	---	---

共)頁 第一页

H-C≡0	C-H (g) + H-I	(g) → H	2C=CHI	(g)		
Bond: D (kJ/mol):	C≡C C=C 839 614	H-I 299	C-I 240	C-H 413		
A) -931	B) +129	9	C) +	506	D) -506	E) ~129
26) The F-B-F bor	nd angle in the	BF3 mole	cule is			
A) 109.5°	B) 120	c	C) (60°	D) 180°	E) 90°
27) The molecular	geometry of th	e H3O+ i	on is	···		
A) linear						
B) trigonal p	pyramidal					
C) bent						
D) tetrahedr	ral					
E) octahedra	al					
A) 1.50	B) 1.48	3	C) 1	.91	D) 0.676	E) 0.993
	·		,		-,	- /
			orce of _	1	V on an area of 5.5 n	n ² .
A) 1.8×10^3	B) 2.4	× 10 ⁵	C) 2	.4	D) 59	E) 0.018
30) Of the followin	ıg, i	s an exotl	nermic p	rocess.		
A) boiling			•			•
B) melting						
	3					
C) subliming						
C) subliming D) freezing						
D) freezing	above are exotl	nermic.				
D) freezing E) All of the			olid?			
D) freezing E) All of the			olid?			
D) freezing E) All of the 31) Which of the fo	llowing is not a		olid?			
D) freezing E) All of the 31) Which of the fo A) metallic	llowing is not a		olid?			
D) freezing E) All of the 31) Which of the fo A) metallic B) covalent-	llowing is not a		olid?			
D) freezing E) All of the 31) Which of the fo A) metallic B) covalent-1	llowing is not a network		olid?			
D) freezing E) All of the 31) Which of the fo A) metallic B) covalent C) molecular D) ionic E) supercritic	llowing is not a network cal	type of s		by solvent	particles is known a	s
D) freezing E) All of the 31) Which of the fo A) metallic B) covalent C) molecular D) ionic E) supercritic	allowing is not a network cal	type of s		by solvent	particles is known a	s
D) freezing E) All of the 31) Which of the fo A) metallic B) covalent- C) molecular D) ionic E) supercritic	llowing is not a network	type of s		by solvent	particles is known a	S
D) freezing E) All of the 31) Which of the fo A) metallic B) covalent-1 C) molecular D) ionic E) supercritic 32) The process of s A) salutation	network cal solute particles	type of s		by solvent	particles is known a	5
D) freezing E) All of the 31) Which of the fo A) metallic B) covalent-1 C) molecular D) ionic E) supercritic 32) The process of s A) salutation B) dehydratic	network cal solute particles on	type of s		by solvent	particles is known a	S

題

:普通化學	【化學系二年	手級】			共 /頁第分
33) Which one of the fo	ollowing vitamins is t	water soluble?			
A) A	В) В	C) K	D) D	E) E	
	of ethanol (C2H5OH C/m. What is the free 3, a nonelectrolyte) i	zing point (°C) of a s		*	
A) -5.42	B) -114.6	C) -120.0	D) -132.3	E) -115	
35) Consider the follow	ving reaction:				
3A → 2B					
	appearance of B is garance of A, we get Δ			appearance of B and	
A) +1	B) -2/3	C) +3/2	D) +2/3	E) -3/2	
36) A second-order rea	action has a half-life	of 18 s when the initi	al concentration of	reactant is 0.71 M.	
The rate constant fo	or this reaction is	M-1 _s -1.			
A) 3.8×10^{-2}		C) 7.8×10^{-2}	D) 18	E) 2.0×10^{-2}	
37) For a first-order re-	action, a plot of	versus	is linear.		
A) In $[A]_{t}$, $\frac{1}{t}$	B) t, $\frac{1}{[A]_t}$	C) $\frac{1}{[A]_t}$, t	D) [A] _t , t	E) ln [A] _t , t	
38) What compound in	ı limestone and marb	le is attacked by acid	rain ?		
A) calcium carbo		•			
B) gypsum					
C) graphite					
D) hydroxyapati	te			•	
E) potassium hy					
39) The electrode at wh	uch oxidation occurs	is called the			
A) voltaic cell					
B) reducing age	nt				
C) cathode					
D) anode					
E) oxidizing age	nt				
40) How many second			netal by the electrol	lysis of a AgNO3	
solution using a ci	arrent of 30 amps B) 2.7 × 10 ⁴		D) 60	E) 3.7 × 10−5	

given by _____.

A)
$$\Delta G = -nFE$$

A)
$$\Delta G = -nFE$$

B) $\Delta G = \frac{-nF}{ERT}$

C)
$$\Delta G = \frac{-E}{nF}$$

D)
$$\Delta G = \frac{-nF}{E}$$

E) $\Delta G = -nRTF$

【背面選有試題】

科目	:	普通化學	【化學系	二年级】
----	---	------	------	------

共 7頁第6頁

	n example of	 ·		
41 22 Ca -	→ ⁴¹ ₁₉ K +			
		_		
A) electron ca	_			
B) gamma em				
C) alpha deca	-			
D) positron do				
E) beta decay	<i>t</i>			
43) Nuclei above the	e belt of stability can I	ower their neutron-to	o~proton ratio by	<u>. </u>
A) positron en			-	
B) electron cap	pture.		•	
C) gamma emi	ission.			
D) beta emissio	on.			
E) Any of the a	above processes will	iower the neutron-to-	-proton ratio.	
44) Hydrogen can ha	ave oxidation states of	f ,		
A) +1 only				
B) 0 only				
C) -1 and +1 or	nly			
D) -1, 0, and +1	•			
E) 0 and +1 on)				
45) Br ₂ can be prep.	ared by combining N	laBr with		
A) Cl ₂	B) HBr	C) NaCl	D) I ₂	E) HCl
46) Glass is	whereas quartz i	ie		
A) crystalline,		·		
	ıs, crystalline			
D) amorpnou,	-			
	a mixture of 5iO2 an	id carbonates		
C) pure SiO ₂ ,	, a mixture of SiO2 an not breakable	nd carbonates		
C) pure SiO ₂ ,	, a mixture of SiO ₂ an	nd carbonates		
C) pure SiO ₂ , D) breakable, E) hard, soft	not breakable			
C) pure SiO ₂ , D) breakable, E) hard, soft 47) In the following	not breakable reaction, Ni ²⁺ is acti	ng as a(n)		
C) pure SiO ₂ , D) breakable, E) hard, soft 47) In the following Ni ²⁺ (g)	not breakable reaction, Ni ²⁺ is action $H_2O(1) \rightarrow Ni(1)$	ng as a(n)	a.	
C) pure 5iO ₂ , D) breakable, E) hard, soft 47) In the following: Ni ²⁺ (g) A) oxidizing a	not breakable reaction, Ni ²⁺ is action $H_2O(1) \rightarrow Ni(1)$	ng as a(n)	·	
C) pure SiO ₂ , D) breakable, E) hard, soft 47) In the following: Ni ²⁺ (g) A) oxidizing a B) ligand	not breakable reaction, Ni ²⁺ is action $H_2O(1) \rightarrow Ni(1)$	ng as a(n)	J.	
C) pure SiO ₂ , D) breakable, E) hard, soft 47) In the following: Ni ²⁺ (g) A) oxidizing a B) ligand C) solvent	not breakable reaction, Ni ²⁺ is action 1 + 6H ₂ O (1) → Ni(1) reaction	ng as a(n)	·	
C) pure SiO ₂ , D) breakable, E) hard, soft 47) In the following Ni ²⁺ (g) A) oxidizing a B) ligand C) solvent D) Lewis acid	not breakable reaction, Ni ²⁺ is action + 6H ₂ O (1) → Ni(1) reaction, Ni ²⁺ is action	ng as a(n)	·	
C) pure SiO ₂ , D) breakable, E) hard, soft 47) In the following: Ni ²⁺ (g) A) oxidizing a B) ligand C) solvent	not breakable reaction, Ni ²⁺ is action + 6H ₂ O (1) → Ni(1) reaction, Ni ²⁺ is action	ng as a(n)	·	
C) pure SiO ₂ , D) breakable, E) hard, soft 47) In the following Ni ²⁺ (g) A) oxidizing a B) ligand C) solvent D) Lewis acid	not breakable reaction, Ni ²⁺ is action + 6H ₂ O (1) → Ni(1) regent	ng as a(n)	·	

科目:普通化學【化學系二年級】

共7頁第7頁

49)	In, the bonds are the same but the spatial arrangement of the atoms is different
	A) stereo isomers
	B) structural isomers
	C) resonance structures
	D) linkage isomers
	E) coordination-sphere isomers
50)	Which geometry does not exhibit cis- trans-isomerism?
	A) linear
	B) octahedral
	C) square planar
	D) tetrahedral
	E) All geometries can exhibit cis- trans-isomerism.

