國立中山大學九十三學年度碩士班招生考試試題

科目:工程概論 机械的码士在赋事胜

共 2 頁第1

一、工程數學部份 (單選題;每題5分,共50分)

1. Which one is the solution of $y' + y = x^2 - 2$

(A)
$$y = ce^{-x} + x^2 - 2x$$
 (B) $y = a\cos x + b\sin x$ (C) $y = e^x + ax^2 + bx + c$ (D) $y = e^{-x} (a\cos x + b\sin x)$

(E) None

2. Which one is the solution of $y''' = e^x$

(A)
$$y = ce^{-x} + x^2 - 2x$$
 (B) $y = a\cos x + b\sin x$ (C) $y = e^x + ax^2 + bx + c$ (D) $y = e^{-x} (a\cos x + b\sin x)$

(E) None

3. Which one in the following differential equations is the nonhomogeneous equation?

(A)
$$(1-x^2)y'' - 2xy' + 6y = 0$$
 (B) $y'' - y = 0$ (C) $y'' + 4y = e^{-x} \sin x$ (D) $x(y''y + y'^2) + 2y'y = 0$ (E) None

4. Which one in the following differential equations is nonlinear?

(A)
$$(I-x^2)y''-2xy'+6y=0$$
 (B) $y''-y=0$ (C) $y''+4y=e^{-x}\sin x$ (D) $x(y''y+y'^2)+2y'y=0$ (E) None

5. Which one is the solution of the initial value problem y'' - y = 0 with y(0) = 4 and y'(0) = -2?

(A)
$$y = 3x^2 - 2x + 4$$
 (B) $y = e^x + 3e^{-x}$ (C) $y = 2e^{2x} - \sin x + 2$ (D) $y = 4e^{2x} - 2\sin x + 2x^2$ (E) None

6. If matrices A and B are defined as $A = \begin{bmatrix} 9 & 3 \\ -2 & 0 \end{bmatrix}$ and $B = \begin{bmatrix} 1 & -4 \\ 2 & 5 \end{bmatrix}$, then the product C = AB is

(A)
$$\begin{bmatrix} 15 & -2I \\ -2 & 8 \end{bmatrix}$$
 (B) $\begin{bmatrix} 15 & -2 \\ -2I & 8 \end{bmatrix}$ (C) $\begin{bmatrix} -15 & 2 \\ -2I & -8 \end{bmatrix}$ (D) $\begin{bmatrix} 15 & -2I \\ 2I & 18 \end{bmatrix}$ (E) None

7. If matrices A and B are defined as $A = \begin{bmatrix} 9 & 3 \\ -2 & 0 \end{bmatrix}$, $B = \begin{bmatrix} I & -4 \\ 2 & 5 \end{bmatrix}$ and $C = \begin{bmatrix} 2 \\ I \end{bmatrix}$, then the product $C = -A^T BC$

is (A)
$$\begin{Bmatrix} -21 \\ 8 \end{Bmatrix}$$
 (B) $\begin{Bmatrix} 21 \\ 8 \end{Bmatrix}$ (C) $\begin{Bmatrix} 21 \\ 6 \end{Bmatrix}$ (D) $\begin{Bmatrix} 36 \\ 6 \end{Bmatrix}$ (E) None

8. Which one is the eigen value solution pair of the matrix. $A = \begin{bmatrix} -40 & 40 \\ -16 & 12 \end{bmatrix}$?

(A)
$$(\lambda_1 = 2; \lambda_2 = 4)$$
 (B) $(\lambda_1 = -2; \lambda_2 = -0.8)$ (C) $(\lambda_1 = -2; \lambda_2 = -4)$ (D) $(\lambda_1 = 2; \lambda_2 = 0.8)$ (E) None

9. Consider A, B and C are nxn matrices, which one in the following matrix operations is wrong?

(A)
$$(AC)^T = C^T A^T$$
 (B) $B(AB)^{-1} = A^{-1}$ (C) $(AC)^{-1} = A^{-1}C^{-1}$ (D) in general, $AB \neq BA$ (E) None

10. Let $v(x, y, x) = 3xz\vec{i} + 2xy\vec{j} - yz^2\vec{k}$ be a differentiable vector function, then the divergence of the vector $\nabla \cdot v$

is (A)
$$3z\vec{i} + 2x\vec{j} - 2yz\vec{k}$$
 (B) $3z\vec{i} + 2x\vec{j} - yz^2\vec{k}$ (C) $3z + 2x - yz^2$ (D) $3z + 2x - 2yz$ (E) None

國立中山大學九十三學年度碩士班招生考試試題

科目:工程概論 机械的碩士在r数等班

夫工頁第2一頁

工程力學部份 (單選題;每題10分,共50分)

1. 考慮點 A(x,y,z)在原點為 O(0,0,0)座標系之位置向量為 $\vec{r}=x\vec{i}+y\vec{j}+z\vec{k}$,若在點 A 處受到一外力向量 $\vec{F}=F_*\vec{i}+F_*\vec{j}+F_*\vec{k}$,其產生的力矩可定義為 $\vec{M}_0=\vec{r}\times\vec{F}$ 。試問下列式子中何者為正確?

$$(A) \quad \vec{M}_O = \begin{vmatrix} \vec{i} & \vec{j} & \vec{k} \\ x & y & z \\ F_x & F_y & F_z \end{vmatrix}$$
 (B) $\vec{M}_O = xF_x + yF_y + zF_z$ (C) $\vec{M}_O = xF_x\vec{i} + yF_y\vec{j} + zF_z\vec{k}$ (D) $\vec{M}_O = 0$ (E)以上皆非

- 2. Determine the moment about the origin O of the force $\vec{F} = 4\vec{i} + 10\vec{j} + 6\vec{k}$ which acts at a point A. Assume that the position vector of A is $\vec{r} = 2\vec{i} 3\vec{j} + 4\vec{k}$.
 - (A) $\vec{M}_{o} = -58\vec{i} + 4\vec{j} + 32\vec{k}$ (B) $\vec{M}_{o} = 8\vec{i} 30\vec{j} + 24\vec{k}$ (C) $\vec{M}_{o} = 12\vec{i} + 20\vec{j} 24\vec{k}$ (D) $\vec{M}_{o} = 0$ (E)以上皆非
- 3. The torque introduces by the three forces acting on the gear is

(A) 60 in-lb (B) 1020 in-lb (C) 540 in-lb (D) 0 in-lb (E)以上皆非

- 4. Consider a particle moving in a straight line, and assume that its position is defined by the equation s = 6t²-t³ (m) where the time variable t is in second. The acceleration a at t = 2 second is
 (A) a = 12 m/sec² (B) a = 0 m/sec² (C) a = -12 m/sec² (D) a = 9.80 m/sec² (E) None
- 5. The three dimensional motion of a particle is defined by the position vector $\vec{r} = ct\vec{i} + (R + \sin pt)\vec{j} + (R + \cos pt)\vec{k}$ The magnitude of the acceleration a of the particle is

(A)
$$a = Rp\sqrt{c^2t + R^2p^2t^2}$$
 (B) $a = \sqrt{c^2t + R^2p^2}$ (C) $a = Rp^2$ (D) $a = 0$ (E) None