國立中山大學經濟學研究所碩士班招生考試「總體經濟學」試題

符號說明: Y= 實質所得, C= 實質消費, I= 實質投資, R= 利率水準, P= 物價水準, M= 貨幣數量, L= 實質貨幣需求, t= 時間, X'= 變數X之一階導數, $X_t=$ 第t期之X值, $X=M,Y,P,C,I,\cdots$, $X_{t,t-1}^e=$ 在第t-1期時 對 X_t 所形成之預測值, $\epsilon_t=$ 第t期總合供給之 外生隨機干擾, $\epsilon_t\sim N(0,\sigma_\epsilon^2)$, $\sigma_\epsilon^2=$ constant.

請回答下列問題:

一、(30%)

請分析以下總體經濟模型

I S:
$$Y = C(Y) + I(R), \quad 0 < C' < 1, \quad I' < 0$$

LM: $\frac{M}{P} = L(Y, R,), \quad L_Y = \frac{\partial L}{\partial Y} > 0, \quad L_R = \frac{\partial L}{\partial R} < 0$

以資導出 總合需求函數 $Y = Y^d(M, P)$, 其中

$$dY = rac{1}{lpha} rac{dM}{P} - rac{1}{lpha} rac{M}{P^2} dP, \qquad \overline{m} \quad rac{1}{lpha} = rac{I'}{(1-C')L_R + L_Y I'} \, .$$

二、(20%)

考慮如下之總合供需函數

AS:
$$Y_t - Y_{t-1} = \beta(P_t - P_{t,t-1}^e) + \epsilon, \quad \beta > 0$$

AD: $P_t - P_{t-1} = -\alpha(Y_t - Y_{t-1}) + M_t - M_{t-1}, \quad \alpha > 0$

假設 $P^{e}_{t,t-1}$ 爲外生因素所決定之固定値,請推算 貨幣政策乘數 $\frac{dY_{t}}{dM_{t}}$ 與 $\frac{dP_{t}}{dM_{t}}$

三、(30%)

請考慮如上述第二題之模型,但令 $P^e_{t,t-1}$ 為依照「理性預期假說 (Rational Expectations Hypothesis)」所形成之價格預測值。 請推算此預測價格 $P^e_{t,t-1}$ 之形成方程式。

四、(20%)

續上述第三題,但假設 貨幣供給函數 爲 $M_t = \bar{M}_t + \hat{M}_t$, 其中 \bar{M}_t 與 \hat{M}_t 分別代表 在 第t-1期時爲「可正確預測」與「不可正確預測」之 第t期貨幣數量的部分,亦即: $\bar{M}_{t,t-1}^e = \bar{M}_t$, $\hat{M}_{t,t-1}^e = \mu_t$, $\mu_t \sim N(0,\sigma_\mu^2)$, $\sigma_\mu^2 = {\rm constant.}$ 請在此貨幣供給條件下 根據「理性預期假說」推算:

- 1.「事先可以正確預測之貨幣政策」乘數 $rac{dY_t}{dM_t}$ 與 $rac{dP_t}{dM_t}$
- 2.「事先不可正確預測之貨幣政策」乘數 $rac{dY_t}{d\hat{M}_t}$ 與 $rac{dP_t}{d\hat{M}_t}$

科目:個體經濟學【經濟所碩士班】

共二頁第一頁

- 1. Explain the following terms:
 - (a) Nash equilibrium; (5%)
 - (b) Transaction costs and Coase Theorem; (5%)
 - (c) Pareto efficiency; (5%)
 - (d) Arrow's Impossibility Theorem. (5%)
- 2. In a duopoly, two firms involve in Cournot competition. The cost function of each firm is given by: $c_i(q_i) = cq_i$, i = 1,2. The market demand function is:

$$p = a - (q_1 + q_2).$$

- (a) What is the Cournot-Nash equilibrium? (5%)
- (b) What will the outcome be if the two firms form a cartel? (5%)
- (c) What will the outcome be if firm 1 acts as a Stackelberg leader? (5%)
- (d) What will the outcome be if firm 1 acts as a price leader? (5%)
- (e) What will the outcome be if the two firms are involved in Bertrand competition? (5%)
- 3. There are *n* agents with identical utility functions, $u_i(G, x_i) = G^{\alpha} x_i^{1-\alpha}$.

Suppose that a total amount of wealth w is about to be equally divided among $k \le n$ of the agents.

- (a) How much of the public good is provided? (10%)
- (b) How does the amount of the public good change as k increases? (5%)
- 4. There are two players, a seller and a buyer, and two dates. At date 1, the seller chooses his investment level $I \ge 0$ at cost I. At date 2, the seller may sell one unit if a good and the seller has cost c(I) of supplying it, where $c'(0) = -\infty, c' < 0, c'' > 0$, and c(0) is less than the buyer's valuation. There is no discounting, so the socially optimal level of investment, I*, is given

by
$$1+c'(I^*)=0$$
.

- (a) Suppose that at date 2 the buyer observes the investment I and makes a take-it-or-leave-it offer to the seller. What is this offer? (5%)
- (b) What is the perfect Nash equilibrium of the game? (10%)
- (c) Can you think of a contractual way of avoiding the inefficient outcome of (a)? (Assume that contract cannot be written on the level of I.) (5%)

國立中山大學九十四學年度碩士班招生考試試題

科目:個體經濟學【經濟所碩士班】

共二頁第二頁

- 5. Two consumers each with an expected utility function of $\ln w$ and \sqrt{w} respectively are offered a gamble. Each consumer initially has wealth w. If one bets x, he will have w+x with a probability π , and w-x with a probability π . For each consumer, solve for the optimal x as a function of π . (10%)
- 6. Suppose that a competitive industry faces a randomly fluctuating price for its output. For simplicity we imagine that the price of output will be p_1 with probability q and p_2 with probability (1-q). It has been suggested that it may be desirable to stabilize the price of output at the average price $\bar{p} = qp_1 + (1-q)p_2$. True or false? Explain why? (10%)

國立中山大學九十四學年度碩士班招生考試試題

科目:統計學【經濟所碩士班】

共】頁第【頁

Answer the following four questions, equally weighted

1.(25%)

Let the 3×1 random vector $\mathbf{x}_t = (X_1, X_2, X_3)'$ follow a multivariate normal distribution,

$$\left[\begin{array}{c} X_1 \\ X_2 \\ X_3 \end{array}\right] \sim N_3(\mu, \Sigma),$$

where

$$\mu = \begin{bmatrix} 170 \\ 68 \\ 40 \end{bmatrix} \quad and \quad \Sigma = \begin{bmatrix} 400 & 64 & 128 \\ 64 & 16 & 0 \\ 128 & 0 & 256 \end{bmatrix}.$$

Find

- (a) The conditional distribution of X_1 given $X_2 = 72$, i.e. $f(X_1|X_2 = 72)$ and
- (b) The conditional distribution of X_1 given $X_2 = 72$ and $X_3 = 24$, i.e. $f(X_1|X_2 = 72, X_3 = 24)$.

2. (25%)

Let X_1, X_2, X_3 be independent with X_i having density $f(x_i) = exp(-x_i), x_i > 0$; $\forall i = 1, 2, 3$. Let $U_1 = X_1 + X_2 + X_3$, $U_2 = X_2/U_1$, and $U_3 = X_3/U_1$. Find the joint density of U_1, U_2, U_3 .

3.(25%) (This is a question of Bayesian Statistics.)

Let X_1, \dots, X_N be a sample from a normal distribution with mean Θ and variance one, and let $\Theta \sim N(a, b^2)$. Find the posterior distribution of Θ given X_1, \dots, X_N .

4.(25%)

Suppose that X_1, \dots, X_N form a random sample from a uniform distribution on the interval (θ_1, θ_2) , where both θ_1 and θ_2 are unknown and $-\infty < \theta_1 < \theta_2 < \infty$. Find the maximum likelihood estimators (MLE's) of θ_1 and θ_2 .