科目名稱:個體經濟學【經濟所碩士班】

※本科目依簡章規定「不可以」使用計算機

題號:403001

共2頁第1頁

1. (10pts) Suppose that three investments have the same three payoffs, but the probability associated with each payoff differs, as illustrated in the table below:

Payoff	Probability	Probability	Probability
	(Investment A)	(Investment B)	(Investment C)
\$500	0.10	0.30	0.40
\$250	0.80	0.30	0.10
\$100	0.10	0.40	0.50

- a. Find the expected return of each investment. (3pts)
- b. Eddie has the utility function U=5Y, where Y denotes the payoff. Which investment will he choose? (1pts)
- c. Rebecca has the utility function $U=\sqrt{5Y}$. Which investment will she choose? (3pts)
- d. John has the utility function $U=5Y^2$. Which investment will he choose? (3pts)
- 2. (5pts) Which of the following utility functions are consistent with convex indifference curves?
 - a. U(X,Y) = 2X + 5Y
 - b. $U(X,Y) = \sqrt{XY}$
 - c. U(X,Y) = Min(X,Y)
 - d. $U(X,Y) = \log(X) + \log(Y)$
- 3. (15pts) Consider a perfectly competitive market of product x with 10,000 identical firms. Cost structure of each firm is $TC = q^2/8 9q/4 + 10$. There are 10,000 consumers with the same utility function $u(q, r) = \log(q \cdot r)$, where q is the quantity of product x and r is the quantity of other products. Each consumer has an income of 5 and faces the price $p_q = 0.25$ and $p_r = 1$.
 - a. Find the market's supply function of x; (8pts)
 - b. Find the market's demand function for x. (7pts)
- 4. (10pts) A firm's production function is $y = \min\{ax_1, bx_2\}$, where y is output, and x_1 and x_2 are factor inputs with prices w_1 and w_1 respectively. Find the firm's cost function.
- 5. (10pts) Answer the following questions:
 - a. What is the meaning of the second theorem of welfare economics? (5pts)
 - b. Discuss its implications. (5pts)
- 6. (15分)兩位候選人在競選中針對某一議題進行辯論,誰能在此議題中得到較多選民的認同則可於選戰中勝出。假設選民的意見於[0,1]之空間中呈現連續均勻分配,且選民將投票給意見與自己較接近之候選人,試問兩候選人應該如何在[0,1]中選擇其在辯論中的意見立場? (答案5分;推導10分)
- 7. (10分)候選人在選舉中勝出成為執政者後經常必須面對公共財的提供問題。假設在一僅有兩人的經濟體中公共財的生產函數為 f(x₁,x₂)=4x₁x₂,其中x_i是i在生產公共財上所下的功夫,其成本對 i=1,2而言為 c(x_i)=x_i,如果 x_i的最大值為 1,試問在沒有政府干預下,均衡公共財產量為何?(4分)兩人投入公共財生產的努力程度分別為何?(6分)
- 8. (10分)承上題,若政府進入統籌公共財的生產,其目標為極大化「公共財產量減去其生產成本」,若假設此二人的投入生產公共財的努力程度是可被政府掌握的,試問最適公共財產量為何?(4分)個人被要求的投入努力程度為何?(6分)
- 9. (15分)公共財的提供問題出在「搭便車」的行為,我們試著以簡單的單期賽局方式說明。在

科目名稱:個體經濟學【經濟所碩士班】

※本科目依簡章規定「不可以」使用計算機

題號:403001

共2頁第2頁

一僅有兩消費者的經濟體中,假設享受公共財所帶來的好處為 10,而購買此公共財的成本為 15,將產生下面的單期賽局:

消費者 乙

消費者 甲

購買 不購買

購買	不購買		
-5, -5	-5, 10		
10, -5	0, 0		

請問納許均衡(Nash equilibrium)為那個策略組合?(7分)此賽局中有嚴格優勢策略(strictly dominant strategy)嗎?如果有,請列出。(8分)

科目名稱:統計學【經濟所碩士班】

※本科目依簡章規定「不可以」使用計算機

題號: 403002

共1頁第1頁

請依序橫寫,在答案卷作答.5題共100分.

1. (20%)

The amount of gasolines sold daily at a service station is uniformly distributed with a minimum of 2,000 gallons and a maximum of 5,000 gallons.

- (a). Find the probability that daily sales will fall between 2,500 and 3,000 gallons.
- (b). What is the probability that the service station will sell at least 4,000 gallons?

2. (20%)

Given the independent random variables X_1 , X_2 and X_3 with the probability density

$$f_1(x_1) = \begin{cases} e^{-x_1} & for x_1 > 0 \\ 0 & elsewhere \end{cases}$$

$$f_2(x_2) = \begin{cases} 2e^{-2x_2} & for x_2 > 0 \\ 0 & elsewhere \end{cases},$$

$$f_3(x_3) = \begin{cases} 3e^{-3x_3} & for x_3 > 0\\ 0 & elsewhere \end{cases}$$

Find the probability $P(X_1 + X_2 \le 1, X_3 > 1)$.

3. (20%)

Given a random sample of size N from a population having the density

$$f(x;\theta) = \begin{cases} e^{-(x-\theta)} & for \ x > \theta \\ 0 & elsewhere \end{cases}$$

Find the maximum likelihood estimator for the parameter θ .

4. (20%)

Suppose the weight X_1 , height X_2 , and age X_3 of a randomly chosen male have a multivariate normal distribution with means 170, 68, and 40 and variances 400, 16, and 256, and with covariance $Cov(X_1, X_2) = 64$, $Cov(X_1, X_3) = 128$, and $Cov(X_2, X_3) = 0$. Find the conditional expectation of X_1 given $X_2 = 72$ and $X_3 = 24$, i.e., $E(X_1 \mid X_2 = 72, X_3 = 24) = ?$

5. (20%)

A paint manufacturer wants to determine the average drying time of a new interior wall paint. If for 12 test areas of equal size he obtained an average drying time of 66.3 minutes and a standard deviation of 8.4 minutes. Construct a 95% confidence interval for the true mean μ .

(Note that if Z is a standard normal, $\operatorname{Prob}(Z \le z) = 0.95$ when z = 1.64, and $\operatorname{Prob}(Z \le z) = 0.975$ when z = 1.96. If U has a student t distribution with k degree of freedom, then $\operatorname{Prob}(U \le t) = 0.975$ when t = 2.201 and k = 11. $\operatorname{Prob}(U \le t) = 0.975$ when t = 2.179 and t = 12.)

科目名稱:總體經濟學【經濟所碩士班】

※本科目依簡章規定「不可以」使用計算機

題號:403003 共2頁第1頁

Please answer the following questions on answer sheets

A. Consider the following model (30%)

Lucas supply curve:

$$\Delta y_t = a \times (p_t - p_t^e) + \varepsilon_{l,t} \tag{1}$$

Aggregate demand curve:

$$\Delta y_t = b \times (m_t - p_t) + \varepsilon_{2,t} \tag{2}$$

Monetary rule:

$$\mathbf{m}_{t} = \overline{\mathbf{m}} + \varepsilon_{m,t} \tag{3}$$

where, y, p and m are output, price level and money supply. $p_t^e = E(p_t \mid I_{t-1})$ in which E(.|.) is the conditional expectation operator and I_{t-1} is the information set at time t-1. $\Delta y_t = y_t - y_{t-1}$. a and b are parameters, and \overline{m} is the mean of m_t . $\varepsilon_{1,t}$, $\varepsilon_{2,t}$ and $\varepsilon_{m,t}$ are disturbances which are identically and independently distributed.

- (1) Please derive the effect of an expected monetary increase on price level and output. (10%).
- (2) Please derive the effect of an unexpected monetary increase on price level and output. (10%).
- (3) What is the policy ineffectiveness argument? Does the above model support the policy ineffectiveness argument? (10%).

B. Solow Growth model: (40%)

$$Y=C+I$$

$$Y = F(L, K), F_{L} > 0 > F_{LL}, F_{K} > 0 > F_{KK}, \lim_{K \to \infty} F_{K} = \lim_{L \to \infty} F_{L} = 0, \lim_{L \to \infty} F_{L} = \lim_{K \to \infty} F_{K} = 0,$$

F is a constant return to scale production function.

$$K = I - \delta K$$
.

S=aY,

$$\dot{L} = nL$$
.

where, F_j , j=K,L is the partial derivative of F with respect to j and F_{ij} is the partial derivative of F_j with respect to j. Y, K, L, I and S are output, capital, labor, investment and saving, respectively. F(.), a, n and δ are the production function, the saving rate, the labor growth rate and the depreciation rate, respectively.

- (1) Please derive the condition for determining the steady state capital stock (10%)
- (2) Given that the production function is Cob-Douglas ($AK^{\alpha}L^{1-\alpha}$), please solve for the steady state capital stock (5%).
- (3) Please derive the condition for determining the golden rule capital stock (10%)
- (4) Given that the production function is Cob-Douglas ($AK^{\alpha}L^{1-\alpha}$), please solve for the golden rule capita stock (5%)
- (5) What is the dynamic inefficiency? Does the Solow model appear dynamic inefficiency? Why? (10%)

科目名稱:總體經濟學 【經濟所碩士班】

※本科目依簡章規定「不可以」使用計算機

題號:403003

共2頁第2頁

C. Please explain the following (30%)

1. permanent income hypothesis (6%)

- 2. Lucas critique (6%)
- 3. long-run Phillips curve (6%)
- 4. uncovered interest parity (6%)
- 5. open market operation (6%)