應用數學 物理研究所入學考試

選擇題(25%, 每題 5 分)

- 1. Which of the following functions are linearly independent on the given interval:
 - (a) e^{ax} , e^{-ax} (for all x)
 - (b) ln(x), $ln(x^2)$ (for x>0)
 - (c) x, $x \ln(x)$ (for 0 < x < 10)
 - (d) 5sin(x)cos(x), 3sin(2x) (for x>0)
- 2. Which of the following ordinary differential equations is exact?
 - (a) $e^{-2\theta}dr 2re^{-2\theta}d\theta = 0$
 - (b) $-\pi \sin(\pi x) \sinh(y) dx + \cos(\pi x^2) \cosh(y) dy = 0$
 - (c) -ydx + xdy = 0
 - (d) $e^x[\cos(y) dx + \sin(y) dy] = 0$
- 3. What is the definition of Fourier Transform?
 - (a) $\int_{-\infty}^{\infty} e^{st} f(t) dt$
 - (b) $\int_{-\infty}^{\infty} e^{-st} f(t) dt$
 - (c) $\int_{-\infty}^{\infty} e^{ist} f(t) dt$
 - (d) $\int_{-\infty}^{\infty} e^{-ist} f(t) dt$
- 4. What is the Laplace transform of the following equation:

$$RI(t) + \frac{1}{c} \int_0^t I(t) dt + L \frac{dI(t)}{dt} = E(t) \qquad \text{where} \quad E(t) = \begin{cases} Asin(Bt) & \text{for } 0 < t < 2\pi \\ 0 & \text{for } 2\pi < t \end{cases}$$
 and R, C, L, A and B are constants, and $I_s = \mathfrak{L}[I(t)]$.

(a)
$$\left(Rs + \frac{1}{C} - Ls^2 \right) I_s = \frac{ABs}{s^2 + B^2} \frac{1}{s}$$

(b)
$$\left(Rs + \frac{1}{C} + Ls^2\right)I_s = \frac{ABs}{s^2 + B^2}(\frac{1}{s} - \frac{e^{-2\pi s}}{s})$$

(c)
$$\left(Rs + \frac{1}{C} + Ls^2\right)I_s = \frac{ABs}{s^2 + B^2} \frac{e^{-2\pi s}}{s}$$

(d)
$$\left(Rs + \frac{1}{C} - Ls^2 \right) I_s = \frac{ABs}{s^2 + B^2} \left(\frac{1}{s} + \frac{e^{-2\pi s}}{s} \right)$$

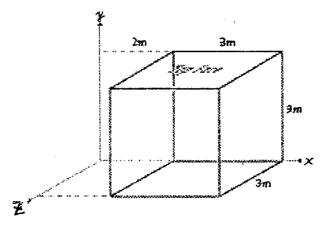
科目:應用數學【物理系碩士班】

共2頁第2頁

- 5. Please calculate $\oint_c \frac{e^z}{(z-1)^2(z^2+4)} dz$ where c is a circular path centered at z=1 with a radius of 1.
 - (a) $\frac{2e\pi}{5}i$
 - (b) $\frac{2e\pi}{5}$
 - (c) $\frac{2e\pi}{25}i$
 - (d) $\frac{2e\pi}{25}$

計算題(75%)

- 1. (15%) If $\vec{B} = -\vec{\nabla}f$, please proves that $\int_V f(\vec{\nabla} \cdot \vec{B}) dv = \int_V B^2 dv + \oint_A f\vec{B} \cdot d\vec{a}$ where \vec{B} , f, V, dv, A and $d\vec{a}$ are a vector, a scalar function, a volume, the volume element, the area that enclosed the volume V and the area element, respectively.
- 2. (40%) Please find the solution, u=u(x,y,t), of a vibration membrane in detail.

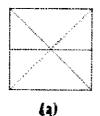

$$\overline{V}^2 u(x,y,t) = \frac{1}{C^2} \frac{\partial^2 u(x,y,t)}{\partial t^2} \quad \text{and} \quad$$

 $u(\boldsymbol{0}, y, t) = 0, \ u(\boldsymbol{a}, y, t) = 0, \ u(x, \boldsymbol{0}, t) = 0, \ u(x, \boldsymbol{b}, t) = 0, \ u(x, y, \boldsymbol{0}) = f(x, y) \ \text{and} \ \ [\frac{\partial}{\partial t} u(x, y, t)]_{t=0} = 0.$

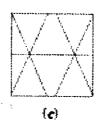
3. (20%) Please find the integration $\int_{-\infty}^{\infty} \frac{dx}{(x^2-3x+2)(x^2+1)}$

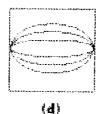
問答題 12 題 (每題 5 分)

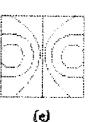
1. The electric field in the region of space shown is given by $E = (8\mathbf{i} + 2y\mathbf{j}) \text{ N/C}$ where y is in m. What is the magnitude of the electric flux through the top face of the cube shown?

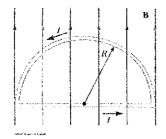


- a. $90 \text{ N} \cdot \text{m}^2/\text{C}$
- b. $6.0 \text{ N} \cdot \text{m}^2/\text{C}$
- c. $54 \text{ N} \cdot \text{m}^2/\text{C}$
- d. $12 \text{ N} \cdot \text{m}^2/\text{C}$
- e. $126 \text{ N} \cdot \text{m}^2/\text{C}$
- 2. A point charge +Q is located on the x axis at x = a, and a second point charge -Q is located on the x axis at x = -a. A Gaussian surface with radius r = 2a is centered at the origin. The flux through this Gaussian surface is
 - **a.** zero because the negative flux over one hemisphere is equal to the positive flux over the other.
 - **b.** greater than zero.
 - c. zero because at every point on the surface the electric field has no component perpendicular to the surface.
 - d. zero because the electric field is zero at every point on the surface.
 - **e.** none of the above.

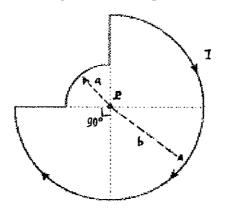

斗目: 電磁學【物理系碩士班】


共 6頁第2頁


3. Which of the following represents the equipotential lines of a dipole?


- When a charged particle is moved along an electric field line,
 - a. the electric field does no work on the charge.
 - **b.** the electrical potential energy of the charge does not change.
 - **c.** the electrical potential energy of the charge undergoes the maximum change in magnitude.
 - d. the voltage changes, but there is no change in electrical potential energy.
 - e. the electrical potential energy undergoes the maximum change, but there is no change in voltage.
- A segment of wire carries a current of 25 A along the x axis from x = -2.0 m to x = 0 and then along the z axis from z = 0 to z = 3.0m. In this region of space, the magnetic field is equal to 40 mT in the positive z direction. What is the magnitude of the force on this segment of wire?
 - a. 1.0 N
 - b. 5.0 N
 - c. 2.0 N
 - d. 3.6 N
 - e. 3.0 N

科目:電磁學【物理系碩士班】


井 台東第

6. A wire bent into a semicircle of radius R forms a closed circuit and carries a current I. The wire lies in the xy plane, and a uniform magnetic field is directed along the positive y axis, as shown in the following figure. What is the magnitude of the force on this segment of wire?

- a. 0 N
- b. 2*IRB* N
- c. -2IRB N
- d. 4IRB N
- e. -4IRB N

7. In the figure, if a = 2.0 cm, b = 4.0 cm, and I = 2.0 A, what is the magnitude of the magnetic field at point P?

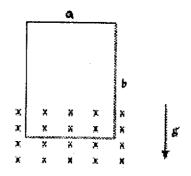
- a. $45\pi/4 \mu T$
- **b.** $50\pi/4 \mu T$
- c. $55\pi/4 \mu T$
- d. $60\pi/4 \mu T$
- e. $65\pi/4 \mu T$

ŝ

- 8. At a point in space where the magnetic field is measured, the magnetic field produced by a current element
 - **a.** points radially away in the direction from the current element to the point in space.
 - **b.** points radially in the direction from the point in space towards the current element.
 - c. points in a direction parallel to the current element.
 - **d.** points in a direction parallel to but opposite in direction to the current element.
 - e. points in a direction that is perpendicular to the current element and perpendicular to the radial direction.
- **9.** Gauss's Law states that the net electric flux, $\oint \vec{E} \cdot d\vec{A}$, through any closed surface is proportional to the charge enclosed: $\oint \vec{E} \cdot d\vec{A} = \frac{q}{\varepsilon_0}$. The analogous formula for magnetic fields is:

a.
$$\oint \vec{B} \cdot d\vec{A} = 0.$$

b.
$$\oint \vec{B} \cdot d\vec{A} = \frac{q_{mag}}{\varepsilon_0}.$$


$$\mathbf{c.} \qquad \oint \vec{B} \cdot d\vec{A} = \frac{I}{\mu_0} \,.$$

$$\mathbf{d.} \quad \oint \vec{B} \cdot d\vec{A} = \frac{I}{\mu_0 \varepsilon_0}.$$

e.
$$\oint \vec{B} \cdot d\vec{A} = -\frac{d\Phi}{dt}$$

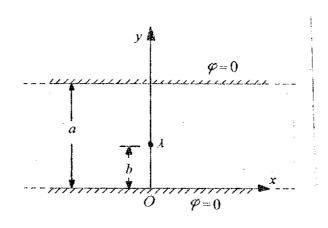
- 10. The capacitor in an RC circuit begins to discharge. During the discharge, in the region of space between the plates of the capacitor, there is
 - a. an electric field but no magnetic field,
 - b. a magnetic field but no electric field,
 - c. both electric and magnetic field,
 - d. no fields of any type,
 - e. no current of any type.

11. A conducting rectangular loop of mass M, resistance R, and dimensions $a \times b$ is allowed to fall from rest through a uniform magnetic field which is perpendicular to the plane of the loop. The loop accelerates until it reaches a terminal speed (before the upper end enters the magnetic field). If a = 2.0 m, B = 1.0 T, R = 40 Ω , g=10 m/\sec^2 , and M = 1.0 kg, what is the terminal speed?

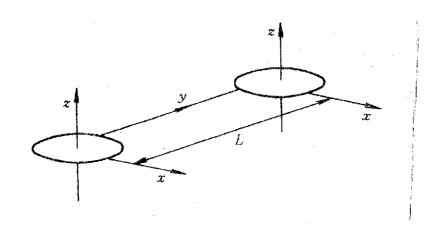
- a. 50 m/s
- b. $100 \,\mathrm{m/s}$
- c. 150 m/s
- **d.** 200 m/s
- e. 250 m/s

12. An induced emf is produced in

- **a.** a closed loop of wire when it remains at rest in a nonuniform static magnetic field.
- **b.** a closed loop of wire when it remains at rest in a uniform static magnetic field.
- c. a closed loop of wire moving at constant velocity in a nonuniform static magnetic field.
- d. all of the above.
- e. only b and c above.


科目:電磁學【物理系碩士班】

共 6 頁 第 6


計算題 2 題 (每題 20 分)

1. The potential on two infinite conducting planes is zero as shown in the following figure. There is a constant linear charge density λ along the z axis at (x, y) = (0, b). Find the distribution of electric potential between the two planes.

(20%) Hint:
$$\int_{0}^{\pi} \sin(mx) \sin(nx) dx = \frac{\pi}{2} \delta_{mn}.$$

2. As shown in the following figure, two circular loops with radius R carry the equal current I and flow in the same direction. Their axes are parallel and the distance between two axes is L ($L \gg R$). Find the magnetic force between the two loops. (20%)

1. A particle moves in a step potential described by

$$V(x) = \begin{cases} 0 & for \quad x \le 0 \\ V_0 & for \quad x > 0 \end{cases}$$

where $V_0>0$. Describe the wavefunction of this particle with a total energy, E, lower than V_0 . (20%)

2. The wavefunction, $\Psi(x)$, of an electron moving in a one-dimensional potential

well
$$V(x) = \begin{cases} 0 & for \quad x \le -a \\ -V_0 & for \quad -a < x < a \\ 0 & for \quad x \ge a \end{cases}$$

is given by
$$\Psi(x) = \begin{cases} A \exp[\kappa(x+a)] & \text{for } x \le -a \\ B \cos(kx) & \text{for } -a < x < a \\ A \exp[-\kappa(x-a)] & \text{for } x \ge a \end{cases}$$

Calculate the expectation values of momentum, $\langle p_x \rangle$, position, $\langle x \rangle$, and total energy, $\langle H \rangle$. (20%)

- 3. The operator of the z-component of the angular momentum, L_z , of an electron in a hydrogen atom is $L_z = \frac{\hbar}{i} \frac{\partial}{\partial \phi}$. Use Heisenberg's uncertainty principle to show that it is impossible to know the azimuthal angle, ϕ , of an electron in an eigenstate of a hydrogen atom. (20%)
- 4. The operators of the x, y, and z components of the spin, S, of a particle with a spin quantum number of 1/2 are given by $S_x = \frac{\hbar}{2} \begin{bmatrix} 0 & 1 \\ 1 & 0 \end{bmatrix}$, $S_y = \frac{\hbar}{2} \begin{bmatrix} 0 & -i \\ i & 0 \end{bmatrix}$ and $S_z = \frac{\hbar}{2} \begin{bmatrix} 1 & 0 \\ 0 & -1 \end{bmatrix}$ in the basis of the eigenstates of S_z . Obtain commutation and anti-commutation relations between these operators. (20%)
- 5. Two identical trains A and B with a length of L and constant velocities V_0 and $-V_0$, respectively, pass each other. At $t_A = t_B = 0$, where t_A and t_B are the time observed in trains A and B, respectively, the centers of both trains, which are chosen as $x_A=0$ and $x_B=0$, coincide each other. An event occurs at the end of train A, i.e. $x_A = -\frac{L}{2}$, and at time $t_A = t_0$. What are the position, x_B , and time, t_B , observed in train B of this event? (20%)