Applied Mathematics (Entrance Examination of Physics Department)

- 1. A particle moves so that its position vector is given by $\vec{r} = \cos \omega t \vec{i} + \sin \omega t \vec{j}$ where ω is a constant. Show that (a) the velocity \mathbf{v} of the particle is perpendicular to \mathbf{r} , (b) the acceleration \mathbf{a} is directed toward the origin and has magnitude proportional to the distance from the origin, (c) $\vec{r} \times \vec{v} = a$ constant vector. (10%)
- 2. (a) Show that $\vec{F} = (2xy + z^3)\vec{i} + x^2\vec{j} + 3xz^2\vec{k}$ is a conservative force field. (b) Find the scalar potential. (c) Find the work done in moving an object in this field from (1,-2,1) to (3,1,4). (10%)
- 3. Solve the differential equation $3y'' + 10y' + 3y = x^2 + \sin x$ (15%)
- 4. (a) Model the undamped mechanical system in the following figure. (b) Solve the system of the two second-order differential equations directed as obtained. (15%)

5. Solve the differential equation by the Laplace transformtion y'' + 3y' + 2y = r(t)

$$(a)r(t) = 0$$

 $(b)r(t) = 1, if 1 < t < 2, and 0 otherwise$
(15%)

6. Solve the one-dimensional wave equation $\frac{\partial^2 u}{\partial t^2} = c^2 \frac{\partial^2 u}{\partial x^2}$, the two boundary conditions are u(0,t) = 0, u(L,t) = 0 for all t, and initial conditions

$$u(x,0) = \begin{cases} \frac{2k}{L}x, & \text{if } 0 < x < \frac{L}{2} \\ \frac{2k}{L}(L-x), & \text{if } \frac{L}{2} < x < L \\ \frac{\partial u}{\partial t}\Big|_{t=0} = 0 \end{cases}$$

7. Evaluate the following integration around the circle counterclockwise

$$\oint \frac{\tan z}{z^2 - 1} dz , \qquad (a)|z| = 3/2 (b)|z| = 1/2$$
 (10%)

國立中山大學九十一學年度碩士班招生考試試題

科目: 電磁學 【物理學系碩士班】

共/頁第/頁

- (10%) Write down the Maxwell's equations. State clearly the meaning of every physical symbol you write down.
- 2. (16%) A positive point charge Q is at the center of a spherical dielectric shell of an inner radius R_i and an outer radius R_o . The dielectric constant of the shell is ϵ . Calculate the electric field \vec{E} , the electric potential V, the electric flux density \vec{D} , and the polarization \vec{P} as functions of the radial distance R. Also, draw your results with diagrams.
- 3. (20%) A point charge Q is at a distance d from the center of a grounded conducting sphere of radius a (a < d). Calculate

(a) the charge distribution induced on the surface of the sphere, and

- (b) the total charge induced on the sphere by integrating the result of (a) over the surface of the sphere.
- 4. (20%) In a Hall-effect experiment, a current of 6.0 A sent length-wise through a conductor 1.0 cm wide, 4.0 cm long, and 10 μ m thick produces a transverse (across the width) Hall voltage of 10 μ V when a magnetic flux density of 1.5 T is passed perpendicularly through the thickness of the conductor. From these data, find
 - (a) the drift velocity of the charge carriers and

(b) the number density of charge carriers.

- (c) Show on a diagram the polarity of the Hall voltage with assumed current and magnetic flux directions, assuming also that the charge carriers are electrons.
- 5. (20%) An emf V is applied across a parallel-plate capacitor of area S. The space between the conducting plates is filled with two different lossy dielectrics of thicknesses d_1 and d_2 , permittivities ϵ_1 and ϵ_2 , and conductivities σ_1 and σ_2 , respectively. Calculate
 - (a) the current density between the plates, \vec{J}_1 and \vec{J}_2 ,
 - (b) the electric field intensities in both dielectrics, \vec{E}_1 and \vec{E}_2 ,
 - (c) the surface charge densities on the plates, ρ_1 and ρ_2 , and at the interface, ρ_{si} , and
 - (d) the power dissipated in the capacitor.

- 6. (14%) Assume that N turns of wire are wound around a toroidal core of a ferromagnetic material with permeability μ . The core has a mean radius r_0 , a circular cross section of radius a (a << r_0), and a narrow air gap of length ℓ_g , as shown below. A steady current I_0 flows in the wire. Calculate
 - (a) the magnetic flux density, \vec{B}_f , in the ferromagnetic core,
 - (b) the magnetic field density, \bar{H}_f , in the core, and
 - (c) the magnetic field density, \vec{H}_g , in the gap.

(Neglect the flux leakage and the fringing effect of the flux in the air gap. C in the diagram indicates a circular contour in the core.)

國立中山大學九十一學年度碩士班招生考試試題

科目:近从粉理[物理學系碩士班]

共 /頁第 / 頁

24% 1.Explain the following terms:

a.Bohr' Corresponding Principle. b.Bohr' radius. c.Bragg' law.

d.Davisson-Germer experiment. e.the fine structure constant.

f.Fermi-Dirac probability function.

g.Larmor precession of an electron in oribital motion.
h.Thomas-Fermi approximation in multi-electron atoms.

16% 2. Using Einstein model and Debye model to calculate the molar heat capacity, Cv, at very low temperature and very high temperature.

note: $\int_{0}^{\infty} \frac{x^3}{0^{x}-1} dx = \frac{\pi^4}{15}$

20% 3. Using Wilson-Sommerfeld Quantization rules to calculate (1) the energy level of the motion of one dimensional

harmonic oscillator.

(2) the energy level of a particle of mass m moves in one dimensional infinite square well of width a.

/0/ 4. For helium atom , write all possible singlet and trilet spin eigenfunctions.

5.The eigenfunction of an electron in a hydrogen atom is described by

9(F)= - [49,00(F)+39211(F)-9210(F)+AID9214(F)]

Find the expectation values of angular momentum $L^{\frac{2}{n}}$ and $L_{\frac{1}{n}}$.

15% 6. Calculate the Lande's factor of the 3P, level in 2838 configuration of C atom, and evaluate the splitting of the level when the atom is in external magnetic field of 0.1 tesla.

note: h=6.626×10-34 joul-sec

 $M_e = 9.1 \times 10^{-31} \, \text{kg}$ e=1.6×10-19 coulomb