國立中山大學九十學年度碩博士班招生考試試題

科目: 應用數學【物理系碩士班】

共 / 頁 第 / 頁

1. A force is described by

$$\vec{F} = -\hat{i} y/(x^2+y^2) + \hat{j} x/(x^2+y^2)$$
.

- (a) Express $\vec{\mathbf{F}}$ in circular cylindrical coordinates. (5)
- (b) Is $\vec{\mathbf{F}}$ a conservative force? why? (5)
- (c) Calculate the work done by \vec{F} in encircling the unit circle once counterclockwise. (5)
- ** operating entirely in circular cylindrical coordinates for (b) and (c)
- 2. Consider a matrix A

$$A = \begin{pmatrix} 1 & 0 & 0 \\ 0 & 0 & 1 \\ 0 & 1 & 0 \end{pmatrix}$$

- (a) Is A a Hermitian matrix? why?
- (b) Find its eigenvalues λ_1 , λ_2 , λ_3 for matrix A. (9)
- (c) Find the orthonormal eigenvectors corresponding to the eigenvalues in (b).(9)
- (d) Construct a transformation matrix R such that

$$R^{+}AR = \begin{pmatrix} \lambda_{1} & 0 & 0 \\ 0 & \lambda_{2} & 0 \\ 0 & 0 & \lambda_{3} \end{pmatrix}$$
 is a diagonal matrix. (4)

3. (a) Given y = x is a solution of

$$(x^2 + 1) y'' - 2 x y' + 2 y = 0$$
, where $y' = dy/dx$,

find a linear independent solution by reducing the order. (10)

- (b) Find the general solution of $y'' + y = x \sin x$. (10)
- 4. Evaluate the following intergrations

(a)
$$\int_0^\infty \frac{dx}{x^4 + 1}$$
 (b) $\int_{-\infty}^\infty \frac{e^{ax}}{1 + e^x} dx$, $0 < a < 1$. (20)

- 5. (a) Expand $f(x) = \begin{cases} 0 & -\pi < x < 0 \\ \sin x & 0 < x < \pi \end{cases}$ in a Fourier series. (15)
 - (b) Using (a) to evaluate

$$\frac{1}{-} + \frac{1}{-} + \frac{1}{-} + \frac{1}{-} + \frac{1}{-} + \frac{1}{-} = ?$$
(5)

國立中山大學九十學年度碩博士班招生考試試題

科目: 電磁學【物理系碩士班】

共/頁第/頁

l.A lucite sheet ($\varepsilon_r = 3.2$) is introduced perpendicularly in a uniform electric field $\vec{E}_0 = \vec{a}_x E_0$ in free space. Determine the electric field intensity \vec{E}_i , the electric displacement \vec{D}_i , and the polarization \vec{P}_i inside the lucite. (10%)

2. Consider a very long coaxial cable. The inner conductor has a radius a and is maintained at a potential V_0 . The outer conductor has an inner radius b and is grounded. Determine the potential distribution in the space between the conductors. (15%)

3.An uncharged conducting sphere of radius b is placed in an initially uniform electric field $\bar{E}_0 = \bar{a}_z E_0$. Determine (a) the potential distribution $V(R,\theta)$, and (b) the electric field intensity $E(R,\theta)$ after the introduction of the sphere. (20%) (Hint: The Legendre Polynomials Phicago) - Phi(Coro) = (0.00) 4. Determine the magnetic flux density on the axis of a uniformly magnetized circular cylinder of a magnetic material. The cylinder has a radius b, length L, and axial magnetization $\bar{M} = \bar{a}_z M_0$. (15%)

5. Two magnetic media with permeabilities μ_1 and μ_2 have a common boundary, as shown in Fig.1. The magnetic field intensity in medium 1 at the point P_1 has a magnitude H_1 and makes an angle α_1 with the normal. Determine the magnitude and the direction of the magnetic field intensity at the point P_2 in the medium 2. (10%)

6.An alternating emf has a voltage amplitude of 100 V and frequency of 60 cycle/s. It is connected in series with a resistor of 1 Ω , a self-inductor of 0.003 H and a capacitor of 0.002 F. Determine (a) the amplitude and phase of the current and (b) the potential difference across the resistor, the capacitor and the inductor. (c) Make a phasor diagram. (15%)

7. Assume that N turns of wire are wound around a toroidal core of a ferromagnetic material with permeability μ . The core has a mean radius I_0 , a circular cross section of radius $a(a << I_0)$, and a narrow air gap of length ℓ_g , as shown in Fig.2. A steady current I_0 flows in the wire. Determine (a) the magnetic flux density \bar{B}_f in the ferromagnetic core; (b) the magnetic field intensity \bar{H}_f in the core; and (c) the magnetic field intensity \bar{H}_g in the air gap. (15%)

F~9.1

國立中山大學九十學年度碩博士班招生考試試題

科目: 近代物理【物理系碩士班】

共/頁第/頁

- 1. An x-ray photon of 0.0500nm wavelength strikes a free, stationary electron. A photon scatters at 90°. Determine the momenta of the incident photon, the scattered photon, and the electron. (15%)
- 2. For a particle in the ground state of an infinite one-dimensional well, find (a) Δx , (b) ΔP , and (c)check your result with the uncertainty principle.(20%)
- 3. For a simple harmonic oscillator of spring constant κ and mass m, one solution of the Schrödinger equation is of the form $\phi(x) = Ae^{-ax^2}$, a gaussian centered at the origin. Determine fully the wave function and energy in this state. ($\int_{-\infty}^{\infty} e^{-2ax^2} dx = \sqrt{\frac{\pi}{2a}}$)(15%)
- 4. The electron of hydrogen atom is the 2P state. (20%)

$$(R_{21}(r) = (\frac{1}{2a_0})^{\frac{3}{2}} \cdot \frac{r}{\sqrt{3}a_0} e^{-\frac{r_0}{2a}})$$

Find (a) the most probable value of r.

- (b) the probability of being found inside the Bohr radius.
- 5. The fine structure splitting of the ${}^2P_{3/2}$ and ${}^2P_{1/2}$ levels in hydrogen is $4.5\times10^{-5} \mathrm{eV}$. From this, estimate the magnetic field that the 2p electron in hydrogen experiences. Assume \vec{B} is parallel to the z axis. (10%)
- 6. The first excited state E_2 of the hydrogen atom is 10.2eV above the ground state E_1 . What is the ratio of the number of atoms in the first excited state to the number in the ground state at T=5800K? (10%)
- 7. The energy difference ΔE between the $\ell=0$ and $\ell=1$ rotational levels in the CO molecule is found experimentally from measurement of the wavelength $\lambda=2.6$ nm of the corresponding transition. For CO, ΔE is equal to 4.77×10^{-4} eV. Find the equilibrium separation, or bond length r_0 , of the CO molecule. (10%)