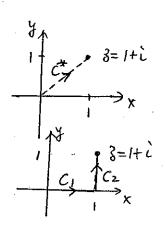
目:(粉理系)應用數學 1.一维玻力程式 = (2) 其边界條件為 U(0,t)=0, U(L,t)=0 for all t(19)初始條件為 u(x,0) = f(x), $\frac{\partial u}{\partial t}|_{t=0} = g(x)$ 求解 (以 Fourier series 表之) 10. 大のマーラー? -(15%) (D + (Frn-1)=? (應) 之结果求取) $\textcircled{d} \overrightarrow{7}^2(x^2+4y^2+93^2)=?$ @ \x[(x2+y2+32)-> (x2+y)+32)]=? 15 3. Je eigenvalues to eigenvectors $\begin{pmatrix}
a \\
(870) \\
(e^{i\phi}\sin\theta - \cos\theta
\end{pmatrix}$ $\begin{pmatrix}
b \\
-2i & i & 2i \\
1 & 0 & -1
\end{pmatrix}$ 4. 解缀分文程 @(2xe2xy+coy)y+2ye2xy =0 (b) y"+6y"+9y=18co>3x 25 上以 Laplace transformation 方法解锁分分程 @ $y'' - 2y' + y = e^t + t$ with y(0) = 1, y'(0) = 0(8%) (b) y' + 2y = r(t)with y(0)=0, y'(0)=0


ather wind

科目:(粉观系)應用數學

20

25

$$\begin{array}{ccc}
(470) & \int_{-\infty}^{\infty} -ax^{2} dx & = ? \\
(470) & \int_{-\infty}^{\infty} x^{2} e^{-ax^{2}} dx & = ? \\
(470) & -\omega
\end{array}$$

- 1. Write down the E and B fields immediately outside the surface of a perfect conductor. Explain. (5%)
- 2. Write the expressions for time-harmonic retarded scalar and vector potentials in terms of charge and current distributions. (6%)
- 3. What is the dispersion of a signal? (5%)
- 4. Write the boundary conditions of **B** and **H** at the interface of a free space and a magnetic material with an infinitely large permeability. (6%)
- 5. Write the integral and differential forms of Maxwell's equations in MKS unit system. Are all Maxwell's equations independent? Explain. (20%)
- 6. A cylindrical capacitor of length L consists of coaxial conducting surfaces of radii α and b. The dielectric material between the surfaces has a relative permittivity $\varepsilon_r = 2 + (4/r)$. (a) Determine the capacitance of this capacitor. (b) Find the electrostatic energy stored in the dielectric region. (Neglect the fringing of the electric field at the edge.) (16%)
- 7. An air coaxial transmission line has a solid inner conductor of radius a and a very thin outer conductor of inner radius b. (a) Determine the magnetic flux density in all space. (6%) (b) Determine the inductance per unit length of the line. (5%) (c) How much magnetic energy per unit length is stored in the system? (5%)
- 8. The E-field of a uniform plane wave propagating in a dielectric medium is given

by
$$E(t,z) = \hat{t} 3\cos(10^8 t - z/\sqrt{3}) - \hat{j} \sin(10^8 t - z/\sqrt{3})$$
 (V/m)

- (a) Determine the frequency and wavelength of the wave.
- (b) What is the dielectric constant of the medium?
- (c) Describe the polarization of the wave.
- (d) Find the corresponding H-field. (16%)
- 9. If the constant electric field in Fig. 2 has a magnitude E_0 , calculate the total electric flux through the parabolodial surface S. (10%)

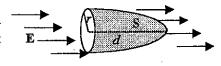


Fig. 2

25

20

10

25

10

15

20

→ 科	目:近代物理所) */頁第	頁
		•
	I. 填充題(每格 4 分,共 40 分)(Boltzmann's constant k=1.38×10 ⁻²³ J/K, Planck's	
	constant h = 6.626×10^{-34} J/s, Rydberg constant R = $1.097 \times 10^{7} m^{-1}$)	
	1.A stationary body explodes into two fragments with equal rest mass of 1.0 kg and	
	moving apart at a speed of 0.6c relative to the original body. The rest mass of the	
	original body is(1) kg.	
	2.A spacecraft's antenna is oriented at an angle of 10° relative to the axis of the	
•	spacecraft. If the spacecraft moves away from the earth at a speed of 0.7c, the angle	
	of the antenna as seen from the earth is(2)	
	3. The shortest wavelength presents in the radiation from an x-ray machine is(3)	
	(whose accelerating potential is 50,000 V). 4.X-rays of wavelength 10.0 pm(1pm = 10^{-12} m) are scattered from a target. The	
	maximum wavelength presents in the scattered x-rays is(4)_ and the maximum	
	kinetic energy of the recoil electrons is(5)	
•	5. An electron has a de Broglie wavelength of 2.00 pm, the kinetic energy of this	
	electron is(6)The phase velocity is(7)_ and the group velocity is(8)	
	6.A measurement determines the position of a proton with an accuracy of	
	$\pm 1.00 \times 10^{-11}$ m. Assume v< <c, 1.00="" in="" is<="" later="" position="" proton's="" s="" td="" the="" uncertainty=""><td>,</td></c,>	,
	(9)	
	7. The wavelength of the H_a presents in the Balmer series of hydrogen is(10)	
	II.計算題(共 60 分)	
	1. Consider a beam of charged particles (with charge q) with a kinetic energy of E	
	moving along the x-axis of a system of two electrodes which are held at a voltage difference of V_0 as shown in Fig. 1, where $E < V_0 q$. (1) Find the eigenfunctions. (2)	
	Find the reflection probability. (3) Find the probability ratio to find the particle at $x = 0.005m$. (15 $\frac{1}{10}$).	
	2. An electron in the Coulomb field of a proton is in a state described by the wave	
	function; $\frac{1}{6} [4\psi_{100}(\vec{r}) + 3\psi_{211}(\vec{r}) - \psi_{210}(\vec{r}) + \sqrt{10}\psi_{21-1}(\vec{r})],$	
	(1)What is the probability in each state? (5 分)	
	(2)What is the expectation value of the energy? (5 分)	
	(3) What is the expectation value of L^2 and L_Z ? (5 \mathcal{H})	
	3. For the carbon atom, find (1)the electronic configurations (2)the possible states (3)its	
	ground state (4)the Lande g factor of the ³ P ₁ state and (5)the energy level splitting of	
	the 3P_1 state under a 0.1 T magnetic field. (20 $\%$)	
	4. Suppose we put a delta-function bump $H' = \alpha \delta(x - a/2)$ (where α is a constant)	
	in the center of the one dimensional infinite square well. Find the first-order	
	correction to the allowed energies. (10 分)	
	×=0	
	○	
	⇒ ∨	