國立中山大學 108 學年度 碩士暨碩士專班招生考試試題

科目名稱:電磁學【物理系碩士班】

-作答注意事項-

考試時間:100分鐘

- ◆ 考試開始響前不得翻閱試題,並不得書寫、劃記、作答。請先檢查答案 卷(卡)之應考證號碼、桌角號碼、應試科目是否正確,如有不同立即 請監試人員處理。
- 答案卷限用藍、黑色筆(含鉛筆)書寫、繪圖或標示,可攜帶橡皮擦、無色透明無文字墊板、尺規、修正液(帶)、手錶(未附計算器者)。每人每節限使用一份答案卷,不得另攜帶紙張,請衡酌作答。
- 答案卡請以2B鉛筆劃記,不可使用修正液(帶)塗改,未使用2B鉛筆、劃記太輕或污損致光學閱讀機無法辨識答案者,其後果由考生自行負擔。
- 答案卷(卡)應保持清潔完整,不得折疊、破壞或塗改應考證號碼及條碼,亦不得書寫考生姓名、應考證號碼或與答案無關之任何文字或符號。
- 可否使用計算機請依試題資訊內標註為準,如「可以」使用,廠牌、功能不拘,唯不得攜帶具有通訊、記憶或收發等功能或其他有礙試場安寧、考試公平之各類器材、物品(如鬧鈴、行動電話、電子字典等)入場。
- 試題及答案卷(卡)請務必繳回,未繳回者該科成績以零分計算。
- 試題採雙面列印,考生應注意試題頁數確實作答。
- 違規者依本校招生考試試場規則及違規處理辦法處理。

國立中山大學 108 學年度碩士暨碩士專班招生考試試題

科目名稱:電磁學【物理系碩士班】

題號: 423002 ※本科目依簡章規定「可以」使用計算機(廠牌、功能不拘)(問答申論題) 共1頁第1頁

計算題和式子推導過程請當份寫詳細。

1. Write down the curl theorem and divergence theorem in the integration form. (10 points)

- 2. Write down the Maxwell equations in vacuum in the differential form. (10 points)
- 3. Derive the speed of an electromagnetic wave from the Maxwell equations. (20) points)
- 4. Calculate the electric field induced by a dipole, P, in a spherical coordinate. (20 points)
- 5. The total charge q is uniformly distributed on the surface a spherical shell with a radius of R. Please calculate the potential at the point of 2R away from the spherical shell center. The reference potential is at the infinite. (10 points)
- 6. Please use the Biot-Savart law to calculate the magnetic field at a distance sfrom a long straight wire which carries a steady current I. (20 points)
- 7. Find the magnetic field at a distance z above the center of a circular loop of radius R, which carries a steady current I. (10 points)

國立中山大學 108 學年度 碩士暨碩士專班招生考試試題

科目名稱:近代物理【物理系碩士班】

-作答注意事項-

考試時間:100分鐘

- ◆ 考試開始響前不得翻閱試題,並不得書寫、劃記、作答。請先檢查答案 卷(卡)之應考證號碼、桌角號碼、應試科目是否正確,如有不同立即 請監試人員處理。
- 答案卷限用藍、黑色筆(含鉛筆)書寫、繪圖或標示,可攜帶橡皮擦、無色透明無文字墊板、尺規、修正液(帶)、手錶(未附計算器者)。每人每節限使用一份答案卷,不得另攜帶紙張,請衡酌作答。
- 答案卡請以2B鉛筆劃記,不可使用修正液(帶)塗改,未使用2B鉛筆、劃記太輕或污損致光學閱讀機無法辨識答案者,其後果由考生自行 負擔。
- 答案卷(卡)應保持清潔完整,不得折疊、破壞或塗改應考證號碼及條碼,亦不得書寫考生姓名、應考證號碼或與答案無關之任何文字或符號。
- 可否使用計算機請依試題資訊內標註為準,如「可以」使用,廠牌、功能不拘,唯不得攜帶具有通訊、記憶或收發等功能或其他有礙試場安等、考試公平之各類器材、物品(如鬧鈴、行動電話、電子字典等)入場。
- 試題及答案卷(卡)請務必繳回,未繳回者該科成績以零分計算。
- 試題採雙面列印,考生應注意試題頁數確實作答。
- 違規者依本校招生考試試場規則及違規處理辦法處理。

國立中山大學 108 學年度碩士暨碩士專班招生考試試題

科目名稱:近代物理【物理系碩士班】

題號: 423001

※本科目依簡章規定「可以」使用計算機(廠牌、功能不拘)(問答申論題)

共2頁第1頁

問答題與計算題 [共六題]

試題共兩頁

*1至4题每题 15分,5至6 题每题 20分,答錯不倒扣。

- 1.(a) Does a blackbody always appear black? Explain the term blackbody?
 - (b) Explain the general characteristics of the spectrum of a blackbody. That is, what does the blackbody spectrum depend on?
- 2. A stick with length of 100 cm moving in a direction parallel to its length appears to be only 75 cm long to an observer. What is the speed of the meter stick relative to the observer?
- 3. In a photoelectric experiment in which monochromatic light and a sodium photocathode are used, we find a stopping potential of 1.85 V for $\lambda = 3000$ Å and 0.82 V for $\lambda = 4000$ Å.

From these data determine

- (a) a value for Planck's constant h in unit of Joule-sec
- (b) the work function of sodium in electron volts

Hint (1): 1 Joule = 6.242×10^{18} eV

- (2): The kinetic energy of the photoelection can be expressed as $K = hc/\lambda w_0$, where c is the speed of light (c = 3×10^8 m/s) and w_0 is the work function of sodium.
- 4. The wave function of a free particle in the first excited state moving in the region -a/2 < x < +a/2 is

$$\Psi(x,t) = \begin{cases} A \sin \frac{2\pi x}{a} e^{-iEt/\hbar}, & -a/2 \le x \le a/2, \\ 0, & x < -a/2 \text{ or } x > a/2. \end{cases}$$

Determine the value of the total energy E of the particle in the first excited state by using the timeindependent Schrodinger equation.

5. A particle moving with kinetic energy equal to its rest energy has a de Broglie wavelength of 1.7898×10⁻⁶ Å. If the kinetic energy doubles, what is the new de Broglie wavelength?

Hint: For a relativistic particle, the energy E of the particle can be expressed as $E^2 = p^2c^2 + m^2c^4 = (mc^2 + K)^2$, where p and K are the momentum and the kinetic energy of the particle, respectively. The de Broglie wavelength is defined as $\lambda = h/p$, where h is the Planck constant $h = 6.626 \times 10-34 \text{ m}^2 \text{ kg} / \text{ s}$

國立中山大學 108 學年度碩士暨碩士專班招生考試試題

科目名稱:近代物理【物理系碩士班】

題號: 423001

※本科目依簡章規定「可以」使用計算機(廠牌、功能不拘)(問答申論題)

共2頁第2頁

6. Suppose that a particle is initially moving in the region x < 0 where the potential energy V(x) = 0, and traveling in the direction of increasing x towards the point x = 0 where

the potential steps up to the value $V(x) = V_0$ in the region x > 0. The total energy of the particle E is greater than V_0 .

(a) Solve the time-independent Schrodinger equation and give the general solution of the wave function (including the time dependent component)

(b) Show that the reflection coefficient R can be expressed in the following form

$$R = \left(\frac{1 - \sqrt{1 - V_0/E}}{1 + \sqrt{1 - V_0/E}}\right)^2$$

Note that the definition of R is R = B*B/A*A, where A and B are the amplitudes of the forward propagating and reversely propagating wave functions at the region x < 0.