科目:基礎數學【應數系碩士班甲組】

共七題。答題時,每題都必須寫下題號與詳細步驟。 請依題號順序作答,不會作答題目請寫下題號並留空白。

1. (10%) Evaluate
$$\int_0^\infty x^2 e^{-x^2} dx$$
.

2. (10%) Evaluate
$$\int_0^1 \frac{x^3 + x + 1}{x^4 + 2x^2 + 1} dx$$
.

3. (15%) Find the extrema of
$$f(x) = \arctan x + \ln(x^2 + 1) - \frac{x-1}{x^2 + 1}$$
, where $x \in \mathbb{R}$.

4. (15%) Calculate the area of the region Ω enclosed by the curve

$$13x^2 + 6\sqrt{3}xy + 7y^2 = 4.$$

- 5. (15%) Let the sequence $\{a_k\}_{k\geq 0}$ be given by $a_0=0$, $a_1=1$, and $a_k=(a_{k-1}+a_{k-2})/2$ for $k\geq 2$. Find the limit of the sequence $\{a_k\}_{k\geq 0}$.
- 6. (15%) Find an orthonormal basis for the subspace spanned by $\{1, x, x^2\}$ of the vector space C of continuous functions with domain $-1 \le x \le 1$, where the inner product is defined by $\langle f, g \rangle = \int_{-1}^{1} f(x)g(x) \ dx$.
- 7. (20%) Let $a_n \ge 0$ for all n. Prove that $\sum_{n=0}^{\infty} a_n$ converges if and only if $\sum_{n=0}^{\infty} \frac{a_n}{2+a_n}$ converges.

科目:數理統計【應數系碩士班甲組】

注意事項:

本試卷共六大題,1~5題,每題16分,第6題20分。

1. Let X, Y be two random variables having the joint p.d.f.

$$f(x,y) = 2e^{-x-y}, \quad 0 \le x < y < \infty.$$

- (i) Find P(Y > 2X).
- (ii) Find the conditional distribution of Y given X = x, and the conditional expectation and variance E(Y|X=x), Var(Y|X=x), respectively and Var(Y).
- (iii) Find the joint moment generating function of (X, Y).
- 2. Let X, Y be independent random variables having exponential $\text{Exp}(\lambda)$ and $\text{Exp}(\beta)$ distribution with mean $1/\lambda$, $1/\beta > 0$ respectively. Let

$$Z = \min\{X, Y\}, \quad W = \left\{ egin{array}{ll} 1, & Z = X \\ 0, & Z = Y \end{array} \right.$$

- (i) Find the p.d.f. of the joint distribution of (Z, W).
- (ii) Show that $P(Z \le z | W = i) = P(Z \le z), i = 0, 1$, i.e. Z and W are independent.
- 3. Suppose X_1, \dots, X_n is a random sample from a normal $N(\theta, a\theta^2)$ distribution, where $\theta > 0$ is unknown and a > 0 is a known constant. Let $\bar{X}_n = \sum_{i=1}^n X_i/n$, $S_n^2 = \sum_{i=1}^n (X_i \bar{X}_n)^2/(n-1)$. Show that $T = (\bar{X}_n, S_n^2)$ is a sufficient statistic for θ but not complete.
- 4. Assume X_1, \dots, X_n is a random sample from a uniform $U(0, \theta)$ distribution, where $\theta > 0$. If we can only observe U_n : the number of $\{X_1, \dots, X_n\}$ which is less than 3, i.e. $U_n = \sum_{i=1}^n I_{\{X_i < 3\}}$, where I is the indicator function. Find the maximum likelihood estimate (MLE) of θ based on U_n .
- 5. Assume X_1, \dots, X_n is a random sample from a gamma $\Gamma(\alpha, \beta)$ distribution with the p.d.f.

$$f(x) = \frac{1}{\Gamma(\alpha)\beta^{\alpha}} x^{\alpha-1} e^{-x/\beta}, \ x > 0,$$

and $\alpha > 0$ is known, $\beta > 0$ is an unknown parameter.

- (i) Show that $T(X) = \sum_{i=1}^{n} X_i/(n\alpha)$ is an uniformly minimum variance estimator (UMVUE) for β , and its variance reaches the Cramér-Rao lower bound (CRLB).
- (ii) If $n\alpha > 2$, find an UMVUE for $q(\beta) = 1/\beta$, and check if it reaches its CRLB.
- 6. Let $f(x|\theta)$ be the following function

$$f(x|\theta) = \frac{e^{x-\theta}}{(1+e^{x-\theta})^2}, \quad x, \theta \in R.$$

- (i) Show that $f(x|\theta)$ is a p.d.f. and the distribution family $\{f(x|\theta), \theta \in R\}$ has monotone likelihood ratio (MLR).
- (ii) Based on a random variable X with p.d.f. $f(x|\theta)$, to test the hypothesis $H_0: \theta = 0$, v.s. $H_a: \theta = 1$, find a α -level most powerful (MP) test.
- (iii) If we are interested in the composite hypothesis testing $H_0: \theta \leq 0$, v.s. $H_a: \theta > 0$, show that the MP test in (ii) is also a α -level uniformly most powerful (UMP) test.

共十題,每題10分。答題時,每題都必須寫下題號與詳細步驟。 請依題號順序作答,不會作答題目請寫下題號並留空白。

- 1. Three points are chosen randomly and independently on a circle. What is the probability that all three pairwise distances between the points are less than the radius of the circle?
- 2. Let A and B be events with probabilities $P(A) = \frac{3}{4}$ and $P(B) = \frac{1}{3}$. Show that $\frac{1}{12} \leq P(A \cap B) \leq \frac{1}{3}$, and find corresponding bounds for $P(A \cup B)$.
- 3. Calculate the probability that a hand of 13 cards dealt from a normal shuffled pack of 52 contains exactly two kings and one ace. What is the probability that it contains exactly one ace given that it contains exactly two kings?
- 4. Let X_1, X_2, X_3 be independent random variables taking values in the positive integers and having mass functions given by $P(X_i = x) = (1 p_i)p_i^{x-1}$ for x = 1, 2, ..., and i = 1, 2, 3. Find $P(X_1 < X_2 < X_3)$.
- 5. Let X have mass function $f(x) = \begin{cases} (x(x+1))^{-1} & \text{if } x = 1, 2, ..., \\ 0 & \text{otherwise,} \end{cases}$ and let $\alpha \in \mathbb{R}$. For what values of α is it the case that $E[X^{\alpha}] < \infty$?
- 6. Of the 2n people in a given collection of n couples, exactly m die. Assuming that the m have been picked at random, find the mean number of surviving couples.
- 7. The speed of a molecule in a uniform gas at equilibrium is a random variable whose probability density function is given by

$$f(x) = \begin{cases} ax^2e^{-bx^2} & x \ge 0\\ 0 & x < 0 \end{cases}$$

where b = m/(2kT) and k, T, and m denote, respectively, Boltzmann's constant, the absolute temperature, and the mass of the molecule. Evaluate a in terms of b.

8. The joint probability density function of X and Y is given by

$$f(x,y) = \frac{6}{7} \left(x^2 + \frac{xy}{2} \right)$$
 0 < x < 1, 0 < y < 2

- (a) Compute the density function of X.
- (b) Find P(X > Y).
- 9. If X_1, X_2, X_3 are independent random variables that are uniformly distributed over (0,1), compute the probability that the largest of the three is greater than the sum of the other two.
- 10. Let x, y > 0. Prove that

$$(x+y)\ln\frac{x+y}{2} \le x\ln x + y\ln y.$$

科目:線性代數【應數系碩士班乙組、丙組】

Answer any 5 Questions from Below, Each of which carries 20 Points.

1. (20 points)

- (a) (6 points) Prove that $\operatorname{rank}(AC) \leq \operatorname{rank}(A)$ for any matrices A and C such that the product AC is defined.
- (b) (7 points) Give its standard matrix representation of the linear transformation T if T is defined by

$$T([x_1, x_2, x_3]) = x_1 + x_2 + x_3.$$

- (c) (7 points) Find the general matrix representation for the reflection of the plane in the line y = mx.
- 2. (20 points) Let $T: R^3 \to R^3$ defined by T([x, y, z]) = [x+y, x+z, y-z]. Let B = ([1, 1, 1], [1, 1, 0], [1, 0, 0]) and E = ([1, 0, 0], [0, 1, 0], [0, 0, 1]) be two ordered bases of \mathbb{R}^3 . Find the matrix representations $R_B = [T]_B$ and $R_E = [T]_E$ of T with respect to bases B and E, respectively. Find also an invertible matrix C such that $R_E = C^{-1}R_BC$.

3. (20 points)

- (a) (10 points) Let $T: \mathbb{R}^2 \longrightarrow \mathbb{R}^2$ be linear. T is said to be an *isometry* if $||T(x,y)|| = ||(x,y)|| = \sqrt{x^2 + y^2}$ for all (x,y) in \mathbb{R}^2 . Prove that T is an isometry if and only if any matrix representation A of T is orthonormal, that is, $A^tA = I$.
- (b) (10 points) Show that every 2×2 orthogonal matrix is of one of two forms: either

$$\begin{bmatrix} \cos \theta & \sin \theta \\ \sin \theta & -\cos \theta \end{bmatrix} \quad or \quad \begin{bmatrix} \cos \theta & -\sin \theta \\ \sin \theta & \cos \theta \end{bmatrix}$$

for some angle θ . What is the geometric meaning of these transformations?

科目:線性代數【應數系碩士班乙組、丙組】

4. (20 points) Find the bases of the row space, column space and nullspace of the following matrix A, respectively.

$$A = \left[\begin{array}{ccccc} 1 & 3 & 0 & -1 & 2 \\ 0 & -2 & 4 & -2 & 0 \\ 3 & 11 & -4 & -1 & 6 \\ 2 & 5 & 3 & -4 & 0 \end{array} \right].$$

5. (20 points) Let

$$A = \left[\begin{array}{rrr} -4 & 6 & -12 \\ 3 & -1 & 6 \\ 3 & -3 & 8 \end{array} \right].$$

- (a) (5 points) Find the characteristic polynomial.
- (b) (5 points) Find the real eigenvalues and the corresponding eigenvectors.
- (c) (10 points) Find an matrix C and a diagonal matrix D such that $D = C^{-1}AC$.
- 6. (20 points) Find a Jordan canonical form and a Jordan basis for the given matrix

$$A = \begin{bmatrix} 2 & 5 & 0 & 0 & 0 \\ 0 & 2 & 0 & 0 & 0 \\ 0 & 0 & -1 & 0 & -1 \\ 0 & 0 & 0 & -1 & 0 \\ 0 & 0 & 0 & 0 & -1 \end{bmatrix}.$$

End of Paper

科目:微積分【應數系碩士班乙組】

請依題號順序作答,不會作答題目請寫下題號並留空白。

計算題:共10題,每題10分。答題時,每題都必須寫下題號與詳細步驟。

1. Evaluate
$$\lim_{t\to 0} \frac{t^3}{\tan^3 2t}$$
.

- 2. For what values of the constants a and b is (1,6) a point of inflection of the curve $y = x^3 + ax^2 + bx + 1$?
- 3. Evaluate

$$\lim_{n\to\infty}\frac{1}{n}\left[\left(\frac{1}{n}\right)^9+\left(\frac{2}{n}\right)^9+\left(\frac{3}{n}\right)^9+\cdots+\left(\frac{n}{n}\right)^9\right]$$

4. The base of a solid is a square with vertices located at (1,0), (0,1), (-1,0), and (0,-1). Each cross-section perpendicular to the x-axis is a semicircle. Find the volume of the solid.

5. Evaluate
$$\int \frac{\sqrt[3]{x} + 1}{\sqrt[3]{x} - 1} \, \mathrm{d}x.$$

- 6. Find the length of the curve $y = \frac{1}{6}(x^2 + 4)^{3/2}$, $0 \le x \le 3$.
- 7. Find the area enclosed by the curve $r^2 = 9\cos 5\theta$.

8. Evaluate
$$1 - e + \frac{e^2}{2!} - \frac{e^3}{3!} + \frac{e^4}{4!} - \cdots$$

- 9. Find the maximum value of the function f(x, y, z) = z + 2y + 3z on the curve of intersection of the plane x y + z = 1 and the cylinder $x^2 + y^2 = 1$.
- 10. Evaluate $\iint_R y e^{xy} dA$, where $R = \{(x, y) | 0 \le x \le 2, 0 \le y \le 3\}$.

Numerical Analysis

Entrance Exam. for the Master Program

2010

If you think that a problem has been stated incorrectly, indicate your interpretation in your solution. In such cases, do not interpret the problem in such a way that it becomes trivial.

1. [25 points]Let $\mathbb{R}(t,s)$ denote the set of (real) floating-point numbers on computers. Thus,

$$x \in \mathbb{R}(t,s) \text{ iff } x = f \cdot 2^e,$$

where $f = \pm (.b_{-1}b_{-2}\cdots b_{-t})_2$, $e = \pm (c_{s-1}c_{s-2}\cdots c_0)_2$ and all b_i and c_j are binary digits.

(a) [8 points] What is the distance d(x) of a positive normalized floating-point number $x \in \mathbb{R}(t, s)$ to its next larger floating-point number:

$$d(x) = \min_{\substack{y \in \mathbb{R}(t,s) \\ y > x}} (y - x)?$$

- (b)[8 points] Determine the relative distance r(x) = d(x)/x, with x as in (a), and give upper and lower bounds for it.
- (c)[9 points] Prove that

$$\max_{x \in \mathbb{R}(t,s)} |x| = (1 - 2^{-t})2^{2^{s} - 1} \qquad \min_{x \in \mathbb{R}(t,s)} |x| = 2^{-2^{s}}$$

- 2. [25 points] Consider the nonlinear equation F(x) = 0, where $F: \Omega \longrightarrow \mathbb{R}, \Omega \subset \mathbb{R}$ is a C^1 function.
 - (a) [10 points] Derive the Newton's method, namely for a given initial guess x_0 derive the formula for x_{k+1} in terms of x_k if Newton's method is used for approximate solution F(x) = 0.
 - (b) [15 points] Assume that $F \in C^2$ and $F'(x_*)$ is non-singular, where x_* is a solution of F(x) = 0. Prove that the Newton's method is well defined if x_0 is sufficiently close to x_* and that the sequence of Newton iterates converges quadratically to the solution.
- 3. [20 points]
 - (a) [10 points] Assume that $f \in C^{n+1}[a, b]$, and f is known on n+1 points $\{x_i : 0 \le i \le n\}$, where $a \le x_0 < x_1 < \cdots < x_n \le b$. Show the Lagrange interpolation formula for f.

科目:數值分析【應數系碩士班乙組】

(b) [10 points] When n = 2 (Quadratic interpolation) with $a = x_0, x_1 = x_0 + h, x_2 = x_1 + h = b$. Show that

$$||f - p2(f;x)||_{\infty} \le \frac{||f'''||_{\infty}}{9\sqrt{3}}h^3,$$

where p2(f;x) is the Lagrange interpolation polynomial and $\|\cdot\|_{\infty}$ is the sup-norm.

- 4. [30 points] State the following numerical integration formulae and errors to approximate a definite integral.
 - (a)[10 points] Composite trapezoidal rule.
 - (b)[10 points] Composite Simpson's rule.
 - (c)[10 points] Two point Gaussian quadrature rule.

科目:高等微積分【應數系碩士班丙組】

Solve all the problems with details. Each problem carries 20 points.

- 1. Let $f_n(x) = x + x^n$, $x \in [0, 1]$.
 - (a) Does f_n converge pointwise on [0,1]? [10%]
 - (b) Does f_n converge uniformly on [0,1]? [10%]
- 2. (a) Find the interval of convergence of $\sum_{n=0}^{\infty} (n+1)(n+2)(x-1)^n$. [10%]
 - (b) Find the sum of the power series in (a) for each x inside the interval of convergence. [10%]
- 3. Let $f(x,y) = (e^{x+y}, e^{x-y})$ for $(x,y) \in \mathbf{R}^2$.
 - (a) Is f an invertible mapping in some neighborhood of (1,0)? [10%]
 - (b) If the answer of (a) is yes, find all partial derivatives of the components of the inverse of f at the point f(1,0). [10%]
- 4. State and prove the First and the Second Fundamental Theorems of Calculus.
- 5. (a) Let f be a real continuous function on a metric space \mathbf{X} . Let $P(f) = \{x \in \mathbf{X} | f(x) > 0\}$. Is P(f) a closed subset of \mathbf{X} ? [10%]
 - (b) Let $\{x_n\}$ be a Cauchy sequence in a metric space **X**. Suppose that $\{x_n\}$ has a convergent subsequence. Does $\{x_n\}$ converge also? [10%]

End of Paper