科目:基礎數學【應數系碩士班甲組】

共七題。答題時,每題都必須寫下題號與詳細步驟。 請依題號順序作答,不會作答題目請寫下題號並留空白。

1. (10%) Let $T: \mathbb{R}^4 \to \mathbb{R}^3$ be the linear transformation given by

$$T(x, y, z, w) = (x + y, z + w, 0).$$

Find the image and kernel of T.

2. (15%) Let $(\mathbb{R}^4, <,>)$ be an inner product space with $< u, v> = u_1v_1 + u_2v_2 + u_3v_3 + u_4v_4$, $u = (u_1, u_2, u_3, u_4)$ and $v = (v_1, v_2, v_3, v_4)$. Let

$$V = \{(x, y, z, w) \in \mathbb{R}^4 \mid x + y + z + w = 0\}$$

be a subspace of \mathbb{R}^4 . Find an orthonormal basis for V.

3. (15%) Let $T: \mathbb{R}^3 \to \mathbb{R}^3$ be the linear transformation given by

$$T(x, y, z) = (3x - 2y - 2z, 2x - y - 2z, 2x - 2y - z).$$

Find a basis such that the matrix representation of T is a diagonal form with respect to the found basis.

- 4. (15%) Let $f(x) = \begin{cases} ax^2, & x < 1 \\ 2x b, & x \ge 1. \end{cases}$ Find a and b such that f is differentiable on \mathbb{R} .
- 5. (15%) Evaluate

$$\int_{\ln 4}^{\infty} \frac{dx}{e^x - 5 + 6e^{-x}}.$$

6. (15%) Evaluate

$$\int_0^2 \int_{y^2}^4 \sqrt{x} \sin \pi x \ dx dy.$$

7. (15%) Find the interval of convergence of $\sum_{n=2}^{\infty} \frac{x^n}{\ln n}$, $x \in \mathbb{R}$.

科目:數理統計【應數系碩士班甲組】 √

Master Entrance Exam- Mathematical Statistics, 2009

(1) Let X_i , i = 1, 2, 3 be three independent Gamma (α, β) random variables with density function $f(x) = \frac{x^{\alpha-1}e^{-x/\beta}}{\Gamma(\alpha)\beta^{\alpha}}$. Let

$$Y_1 = \frac{X_1}{X_1 + X_2}, Y_2 = \frac{X_1 + X_2}{X_1 + X_2 + X_3}, Y_3 = X_1 + X_2 + X_3.$$

Show that Y_i , i = 1, 2, 3 are independent and find their marginal distributions. (10 pts)

- (2) Let X_1, \dots, X_n be an i.i.d. sample from a Rayleigh distribution with density function, $f(x) = \frac{x}{\sqrt{2}}e^{-x^2/2\vartheta^2}, x \ge 0$.
 - (a) Find the method of moment estimate of ϑ .(10 pts)
 - (b) Find the maximum likelihood estimate of ϑ .(10 pts)
 - (c) Find the Cramer-Rao lower bound on the variance of any unbiased estimate of ϑ .(10 pts)
- (3) Assume X_1, \dots, X_n are independent $N(\mu, \sigma^2)$ random variables. Let $\bar{X} = \frac{1}{n} \sum_{i=1}^n X_i$ and $\vec{X} = (X_1 \bar{X}, X_2 \bar{X}, \dots, X_n \bar{X})$.
 - (a) Find the following joint moment generating function of \bar{X} and $\bar{X} = (X_1 \bar{X}, X_2 \bar{X}, \dots, X_n \bar{X})$,

$$M(s, t_1, \dots, t_n) = E[\exp(s\bar{X} + t_1(X_1 - \bar{X}) + \dots + t_n(X_1 - \bar{X}))].(10 \text{ pts})$$

- (b) Use the result of (a) to find the distribution of the sample mean \bar{X} and show that the sample mean \bar{X} and the sample variance $S^2 = \frac{1}{n-1} \sum_{i=1}^n (X_i \bar{X})^2$ are independent. (10 pts)
- (4) Let X_1, \dots, X_n be a iid sample from a distribution F(x), and let $F_n(x) = \frac{1}{n} \sum_{i=1}^n I_{(-\infty,x]}(X_i)$, where

$$I_{(-\infty,x]}(X_i) = \begin{cases} 1 & \text{if } X_i \le x \\ 0 & \text{if } X_i > x \end{cases}$$

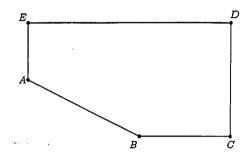
Find the correlation of $F_n(u)$ and $F_n(v)$.(10 pts)

- (5) Suppose that X_1, X_2, \dots, X_n are iid $N(\mu, \sigma^2)$ random variables.
 - (a) Show that the statistic $T = (\bar{X}, S^2)$ (the sample mean and sample variance) is a complete sufficient statistic for (μ, σ^2) .(10 pts)
 - (b) Derive the generalized likelihood ratio test for $H_0: \sigma^2 = \sigma_0^2$ versus $H_a: \sigma^2 \neq \sigma_0^2$. (10 pts)
- (6) Let X_1, \dots, X_n be a sample from U(a, b) distribution and denote the order statistics by $X_{(1)}, X_{(2)}, \dots, X_{(n)}$. Find the mean and variance of the kth order statistic $X_{(k)}$. (10 pts)

科目:機率論【應數系碩士班甲組】√

共十題,每題10分。答題時,每題都必須寫下題號與詳細步驟。 請依題號順序作答,不會作答題目請寫下題號並留空白。

- 1. The Gnollish language consists of 3 words, "splargh," "glumph," and "amr." In a sentence, "splargh" cannot come directly before "glumph"; all other sentences are grammatically correct (including sentences with repeated words). How many valid 3-word sentences are there in Gnollish?
- 2. Six points on a circle are given. Four of the chords joining pairs of the six points are selected at random. What is the probability that the four chords are the sides of a convex quadrilateral? (Simplify your answer)
- 3. A point P is selected at random from the interior of the pentagon with vertices $A=(0,2), B=(4,0), C=(2\pi+1,0), D=(2\pi+1,4)$ and E=(0,4). What is the probability that $\angle APB$ is obtuse?



- 4. English and American spellings are *rigour* and *rigor*, respectively. A man staying at a Parisian hotel writes this word, and a letter taken at random from his spelling is found to be a vowel. If 40 percent of the English-speaking men at the hotel are English and 60 percent are Americans, what is the probability that the writer is an Englishman?
- 5. On a multiple-choice exam with 3 possible answers for each of the 5 questions, what is the probability that a student would get 4 or more correct answers just by guessing? (Simplify your answer)
- 6. The lifetime of an electronic amplifier is modeled as an exponential random variable. If 10% of the amplifiers have a mean of 20,000 hours and the remaining amplifiers have a mean of 50,000 hours, what proportion of the amplifiers fail before 60,000 hours?
- 7. Suppose X_1, X_2, \ldots are jointly continuous and independent, each distributed with marginal pdf f(x), where each X_i represents annual rainfall at a given location. Find the distribution of the number of years until the first year's rainfall, X_1 , is exceeded for the first time.
- 8. Find the pdf of $\prod_{i=1}^{n} X_i$, where the X_i s are independent uniform (0,1) random variables.
- 9. If X_1, X_2, \ldots, X_n are independent and identically distributed random variables having uniform distributions over (0,1), find (a) $E[\max_{i=1,\ldots,n} X_i]$; (b) $E[\min_{i=1,\ldots,n} X_i]$.
- 10. Let X be a nonnegative random variable. Prove that

$$E[X] \le (E[X^2])^{1/2} \le (E[X^3])^{1/3} \le \cdots$$

科目:線性代數【應數系碩士班乙組、丙組】 ✓

Let $M_n(\mathbb{C})$ denote the set of $n \times n$ matrices over \mathbb{C} .

1. (40 points) Let
$$A = \begin{pmatrix} 0 & 1 & 0 & 0 & 0 & \cdots & 0 & 0 & 0 \\ 0 & 0 & 1 & 0 & 0 & \cdots & 0 & 0 & 0 \\ 0 & 0 & 0 & 1 & 0 & \cdots & 0 & 0 & 0 \\ \vdots & \vdots & \ddots & \vdots & \ddots & \vdots & \ddots & \vdots & \vdots \\ 0 & 0 & 0 & 0 & 0 & \cdots & 0 & 0 & 1 \\ 1 & 0 & 0 & 0 & 0 & \cdots & 0 & 0 & 0 \end{pmatrix} \in M_{12}(\mathbb{C}).$$

- (a) Find the characteristic polynomial of A.
- (b) Find the minimal polynomial of A.
- (c) Is A diagonalizable? (Give your reasons).
- (d) Find the Jordan form of A.
- 2. (50 points) Let $X \in M_{13}(\mathbb{C})$. We denote the rank of X by rank X and denote the transpose of X by X^t . Prove or disprove the followings:
 - (a) $rank(X^2) = rankX$.
 - (b) $\operatorname{rank}(X^tX) = \operatorname{rank}X$.
 - (c) if 0 is an eigenvalue of A, then A is singular.
 - (d) if A is singular, then 0 is an eigenvalue of A.
 - (e) if there exists a positive integer m such that $A^m = 0$, then $A^{13} = 0$.
- 3. (10 points) Find the characteristic polynomial of $\begin{bmatrix} 3 & 1 \\ 2 & 2 \end{bmatrix}^{100}$.

科目:微積分【應數系碩士班乙組】√

Entrance Calculus for the Master program

Twenty points for each problem. Please write down all the detail of your proof and answers.

1. Find the limit of the following sequence $\{x_N\}$,

$$\sqrt{2},\sqrt{2+\sqrt{2}},...,\sqrt{2+\sqrt{2+\sqrt{2+...}}}$$
 involving n squre roots , ...

2. Determine the convergence or the divergence of the following series,

$$\ln \prod_{n=1}^{\infty} (1 + \frac{1}{n}).$$

3. Prove the Schwarz inequality

$$\{ \int_{a}^{b} w f(x) g(x) dx \}^{2} \le \{ \int_{a}^{b} w f^{2}(x) dx \} \{ \int_{a}^{b} w g^{2}(x) dx \}, \tag{1}$$

where $w \geq 0$ on [a, b].

4. Find the sum of the limit

$$\lim_{n\to\infty}(\frac{n}{n^2+1^2}+\frac{n}{n^2+2^2}+\ldots+\frac{n}{n^2+n^2}).$$

5. Prove that the functions $r^n \cos n\theta$ and $r^n \sin n\theta$ satisfy the Laplace equation,

$$\Delta u = \frac{\partial^2 u}{\partial x^2} + \frac{\partial^2 u}{\partial y^2} = 0,$$

where (r, θ) are the polar coordinates, $x = r \cos \theta$ and $y = r \sin \theta$.

科目:數值分析【應數系碩士班乙組】√

Please write down all the detail of your computation and answers.

1. (20%) Use (1) Lagrange formula, (2) Neville's method, and (3) Newton divided difference formula to compute the cubic polynomial p(x) interpolating the following data

x	-1	0	1	2	
y	2	2	2	8	١.

- 2. (20%) (1) State the secant method, Newton method and the fixed point method to find a root of a given nonlinear equation. (2) State the advantage, disadvantage and the order of convergence of each method.
- 3. (20%) State (1) composite midpoint rule, (2) composite trapezoidal rule, (3) composite Simpson's rule and (4) two-point Gaussian quadrature to approximate an definite integral with error formulas.
- 4. (20%) (1) State the pivoting strategies of Gaussian elimination with maximal column pivoting (partial pivoting), scaled column pivoting (implicit scaling) and maximal pivoting (complete pivoting) for $n \times n$ matrix A.
 - (2) Which one has the highest accuracy to solve linear systems?
 - (3) Which one uses the least CPU time?
- 5. (20%) Let A be an $n \times n$ nonsingular matrix and B be an $n \times m$ matrix. State the fast numerical method to compute (1) determinant of A, (2) $A^{-1}B$. How many arithmetic operations are needed in (1), and what is the minimal memory needed in (2)?

科目:高等微積分【應數系碩士班丙組】 √

Solve all the problems with details. Each problem carries 20 points

1. A function f is said to be Lipschitz on an interval [a, b] if there is some K > 0 such that for all $x, y \in [a, b]$,

$$|f(x) - f(y)| \le K|x - y|.$$

- (a) Show directly that the Lipschitz function f is integrable on [a, b]. (10%)
- (b) Show that the Lipschitz function f is uniformly continuous on [a, b]. (10%)
- 2. Given a sequence (x_n) in \mathbb{R} , define

$$\overline{\lim} x_n := \lim_{n \to \infty} \sup \{x_k : k \ge n\}$$
 and $\underline{\lim} x_n := \lim_{n \to \infty} \inf \{x_k : k \ge n\}$.

- (a) Find $\overline{\lim} x_n$ and $\underline{\lim} x_n$ of the sequence $x_n = \sin(\frac{n\pi}{4})$. (6%)
- (b) For any bounded sequence (x_n) , show that $x = \overline{\lim} x_n$ if and only if for any $\epsilon > 0$, there is only finitely many x_n 's satisfying $x_n \ge x + \epsilon$ but there is infinitely many x_n 's satisfying $x_n \ge x \epsilon$. (14%)
- 3. Show that if $f: I \to \mathbf{R}$ is continuous on I where I is a closed and bounded subset of \mathbf{R}^n , then f[I] is also a closed and bounded set in \mathbf{R} .
- 4. Define the function $f: \mathbb{R}^2 \to \mathbb{R}$ by

$$f(x,y) = \begin{cases} \frac{y\sqrt{x^2+y^2}}{|x|} & \text{if } x \neq 0\\ 0 & \text{if } x = 0 \end{cases}$$

- (a) Show that f is not continuous at (0,0). (6%)
- (b) Show that f has directional derivatives in all directions at (0,0). (7%)
- (c) Show that for all $c \in \mathbf{R}$, there is a vector \mathbf{v} of norm 1 such that the directional derivative along \mathbf{v} , $D_{\mathbf{v}}f(0,0)$ is equal to c. (7%)
- 5. (a) Evaluate the line integral $\int_C y \, dx + x \, dy$ when (10%)
 - (i) C is the upper semi-circle of radius 2 and center (0,0) oriented counterclockwise;

科目:高等微積分【應數系碩士班丙組】

(b) The line integral $\int F \cdot d\gamma$ is said to be independent of path if $\int_{C_1} F \cdot d\gamma = \int_{C_2} F \cdot d\gamma$ for any two paths having the same initial and final points. Give a necessary and sufficient condition on the C^1 vector function F on \mathbb{R}^2 such that the line integral $\int F \cdot d\gamma$ is independent of path. Justify your answer. (10%)

End of Paper