注意事項:

• 本試卷共五大題,每大題20分。

1. Suppose X_1, \dots, X_n are independent Normal $\mathcal{N}(\mu, \sigma)$ random variables. Let $\bar{X}_n = \sum_{i=1}^n X_i/n$, $S_n^2 = \sum_{i=1}^n (X_i - \bar{X}_n)^2/(n-1)$. Show that

(i)
$$V_n = \frac{(n-1)S_n^2}{\sigma^2} \sim \chi_{n-1}^2.$$

(ii)
$$\frac{\sqrt{n-1}(S_n^2 - \sigma^2)}{\sigma^2 \sqrt{2}} \xrightarrow[n \to \infty]{} \mathcal{N}(0,1).$$

- 2. Suppose X_1, \dots, X_n are independent random variables, where for $i = 1, \dots, n$, X_i has $\Gamma(\alpha_i, \beta)$ distribution, $\alpha_i, \beta > 0$. Let $T_i = \sum_{j=1}^i X_j, i = 1, \dots, n$, and $Y_i = \frac{T_i}{T_{i+1}}, i = 1, \dots, n-1$.
 - (i) Show that Y_1, T_2 are independent, and find their distributions.
 - (ii) Show that when α_i , $i = 1, \dots, n$ are known, T_n is a complete sufficient statistic for β .
 - (iii) Show that $\mathbb{Y}_{n-1} = (Y_1, \dots, Y_{n-1})$ is an ancillary statistic for β , and discuss whether Y_1, \dots, Y_{n-1}, T_n are independent, and find their joint distribution.
- 3. Suppose U_1, U_2, \dots, U_n are independent uniform (α, β) random variables, where α, β are both unknown parameters and $\alpha < \beta$.
 - (i) Find a sufficient statistics of (α, β) .
 - (ii) Find the method of moments estimator of (α, β) , and discuss whether they are also a sufficient statistics of (α, β) .
 - (iii) Assume α is known, find a sufficient and complete statistics for β , and a uniformly minimum variance unbiased estimator (UMVUE) based on it.
- 4. Suppose X_1, \ldots, X_n are independent $\mathcal{E}(\lambda)$, $\lambda > 0$, random variables. If we could not observe the values of X_1, \ldots, X_n , but the number N of $X_i, i = 1, \cdots, n$ greater than a constant M, M > 0. i.e. $N = \sum_{i=1}^n I_{\{X_i \leq M\}}$. Let $p = P(X \leq M) = 1 e^{-\lambda M}$,
 - (i) Find the maximum likelihood estimate (MLE) \hat{p} of p, and its corresponding distribution function.
 - (ii) Find the Cramér-Rao lower bound of p, and show that \hat{p} is also a UMVUE of p.
 - (iii) Find the MLE of λ .
- 5. Let X_1, \dots, X_n be a random sample from exponential distribution $\mathcal{E}(\theta)$, $\theta > 0$. To test the hypothesis $H_0: \theta = \theta_0$, versus $H_a: \theta = \theta_1$, where $\theta_1 < \theta_0$ are two given constants.
 - (i) Find an UMP test for testing H_0 under significance level $\alpha, 0 < \alpha < 1$.
 - (ii) Find a level α UMP test for H_0 versus $H'_a: \theta < \theta_0$, and the corresponding power function.

共十題,每題10分。答題時,每題都必須寫下題號與詳細步驟。 請依題號順序作答,不會作答題目請寫下題號並留空白。

1. Find the inverse of the matrix

$$W = \frac{1}{2} \begin{bmatrix} 1 & 1 & \sqrt{2} & 0 \\ 1 & 1 & -\sqrt{2} & 0 \\ 1 & -1 & 0 & \sqrt{2} \\ 1 & -1 & 0 & -\sqrt{2} \end{bmatrix}.$$

2. For which s does A have all $\lambda > 0$ (therefore positive definite)?

$$A = \begin{bmatrix} s & -4 & -4 \\ -4 & s & -4 \\ -4 & -4 & s \end{bmatrix}.$$

3. If A and B are positive-definite matrices of order m and $0 < \alpha < 1$, show that

$$\mid \alpha A + (1-\alpha)B \mid \geq \mid A \mid^{\alpha} \mid B \mid^{1-\alpha}$$
.

Moreover, equality holds only if A = B.

- 4. Let A and A + I be nonsingular $k \times k$ matrices. Show that $A^{-1} + I$ is nonsingular.
- 5. Let A be a nonsingular matrix of order $n \times n$, and let c and be $n \times 1$ vectors. If $\mathbf{d}'A^{-1}\mathbf{c} \neq -1$, show that

$$(A + cd')^{-1} = A^{-1} - \frac{(A^{-1}c)(d'A^{-1})}{1 + d'A^{-1}c}.$$

6. Evaluate

$$\lim_{x \to \infty} \left(\frac{1}{x} \frac{a^x - 1}{a - 1} \right)^{1/x}, \quad \text{where } a > 0, a \neq 1.$$

- 7. The base of a certain solid is the circular disk $x^2 + y^2 \le 4$ in the xy-plane. Each plane perpendicular to the x-axis cuts the solid in an equilateral triangle. Find the volume of the solid.
- 8. Evaluate

$$\int_0^{\pi/2} \frac{\mathrm{d}x}{1 + (\tan x)^{\sqrt{2}}}.$$

- 9. Find the radius of convergence and interval of convergence of the power series $\sum_{k=0}^{\infty} 2^k (x-4)^k / \ln(k+2)$.
- 10. Find the volume of the solid bounded by xy-plane, the cylinder $x^2 + y^2 = 4$, and the paraboloid $z = 2(x^2 + y^2)$.

- (1) Assume $\{X_i\}_{i=1}^n$ are independent U(0,1) random variables and let $\{X_{(i)}\}_{i=1}^n$ denote the corresponding order statistics.
 - (a) Prove that, for $1 \le k \le n+1$,

$$P(X_{(k)} - X_{(k-1)} \le a) = 1 - (1-a)^n, \forall \ 0 \le t \le 1,$$

where $X_0 = 0$ and $X_{n+1} = 1$. (10pts)

- (b) Let $R = X_{(n)} X_{(1)}$ and $M = (X_{(n)} + X_{(1)})/2$. Find the joint probability distribution of R and M. (10 pts)
- (2) Let $f(x,y) = (2\pi(1+x^2+y^2)^{3/2})^{-1}$, $x,y \in R$ be the joint probability density function of (X,Y). Find the following conditional expectation, E(|Y||X=x), $x \in R$. (10 pts)
- (3) Let X_1, X_2, X_3, X_4 be i.i.d. N(0,1) random variables. Find the moment generating function of $Z = X_1X_2 + X_3X_4$. (10 pts)
- (4) Let X be a random variable with finite nth moment, that is $E(X^n) \leq \infty$. Prove that $E(X^n) = n(\int_0^\infty x^{n-1}(1-F(x))dx \int_0^\infty x^{n-1}F(x)dx).$ (10 pts)
- (5) Let $f(x,y) = \frac{1}{4}e^{-|x|-|y|}(1+xye^{-2|x|-|y|}-xye^{-|x|-2|y|}), x,y \in \mathbf{R}$ denote the joint probability density function of X and Y.
 - (a) Find the marginal distribution of X.(10 pts)
 - (b) Show that X and Y are not independent. (10 pts)
- (6) Let U be a U(0,1) random variable, and let $X = \sin(2\pi U)$, $Y = \cos(2\pi U)$. Find Var(X+Y).(10 pts)
- (7) Assume that X and Y are independent Gamma (1,1) random variables. Find $E[(X+Y)^3]$. (10 pts)
- (8) Let X_1, X_2, \cdots be a sequence of i.i.d.random variables with $E(X_i) = \mu$ and $Var(X_i) = \sigma^2$. Let N be a Poisson(λ) random variable that is independent of the sequence $X_i, i \geq 1$. Express $Var(\sum_{i=1}^N X_i)$ in terms of μ, σ^2 and λ .(10 pts)

國立中山大學97學年度碩士班招生考試試題

·目:微積分【應數系碩士班乙組】

共 | 頁第 | 頁

Ten points for problem 1, and 15 points for each of problems 2 to 7. Please write down all the detail of your computation.

- 1. Evaluate $\lim_{n\to\infty} (\pi^n + \sqrt{10}^n)^{1/n}$.
- 2. Evaluate $\int \frac{1}{x\sqrt{a+bx}} dx$ where $a \neq 0$.
- 3. Show that $f(x) = x^3 \frac{4}{x}$ has an inverse function f^{-1} on $(0, \infty)$ and find $(f^{-1})'(6)$.
- 4. Solve the differential equation $xy'(x) = 2xe^{-y(x)/x} + y(x)$ with y(1) = 0.
- 5. Find all values of p such that $\sum_{n=2}^{\infty} \frac{1}{n} (\ln n)^{-p}$ converges.
- 6. Discuss the continuity and differentiability of

$$f(x,y) = \begin{cases} \frac{x+y}{x-y} & \text{if } x \neq y \\ 0 & \text{if } x = y \end{cases}$$

in \mathbb{R}^2 .

7. Let $f(x,y) = \sqrt{4-2x^2-2y^2}$ and $g(r,t,\theta) = (r\cos t\theta, r\sin t\theta)$. Use chain rule to compute the gradient $\nabla f(g(r,t,\theta))$.

Numerical Analysis

Entrance Exam. for the Master Program

2008

If you think that a problem has been stated incorrectly, indicate your interpretation in your solution. In such cases, do not interpret the problem in such a way that it becomes trivial.

- 1. (a) [10 points] Describe the binary number system for real number.
 - (b) [10 points] Describe the computer's floating-point number system.
 - (c) [10 points] Describe the cancellation error in computer's arithmetic operations.
- 2. (a) [10 points] Assume that $f \in C^{n+1}[a,b]$, and f is known on n+1 points $\{x_i : 0 \le i \le n\}$, where $a \le x_0 < x_1 < \cdots < x_n \le b$. Show the Lagrange interpolation formula for f.
 - (b) [10 points] When n=2 (Quadratic interpolation) with $a=x_0, x_1=x_0+h, x_2=x_1+h=b$. Show that

$$||f - p2(f;x)||_{\infty} \le \frac{||f'''||_{\infty}}{9\sqrt{3}}h^3,$$

where p2(f;x) is the Lagrange interpolation polynomial and $\|\cdot\|_{\infty}$ is the sup-norm.

- 3. (a) [10 points] Let $f: \mathbb{R} \to \mathbb{R}$ be a real value function on real numbers. Define the condition number of f and explain the meaning of condition number.
 - (b) [10 points] Let $y_n = \int_0^1 \frac{t^n}{t+5} dt$. Prove $y_k = -5y_{k-1} + \frac{1}{k}$, k = 1, 2, ...
 - (c) [10 points] We propose to compute y_n recursively by relating y_k to y_{k-1} . Therefore we have a problem $f_n : \mathbb{R} \to \mathbb{R}$, and $y_n = f_n(y_0)$. Prove that the condition number of f_n goes to infinity as n goes to infinity.
- 4. [20 points] Use Two-point Newton-Cotes and two-point Gauss formulas to approximate

$$\int_0^1 t^{-\frac{1}{2}} f(t) \, dt.$$

where f is continuous real value function on [0,1] and the two prescribed nodes in the Newton-Cotes formula are taken to be the endpoints.

- 1 (14 points) Let A, B be two $n \times n$ matrices. Prove that A and B are row equivalent if and only if there exists an invertible matrix C such that CA = B.
- 2 (14 points) Suppose A is a symmetric matrix, and that $\lambda_1 \neq \lambda_2$ are eigenvalues of A. Prove that any eigenvector \vec{v}_1 corresponding to λ_1 is orthogonal to any eigenvector \vec{v}_2 corresponding to λ_2 .
- 3 (14 points) Suppose W, V are subspace of R^n , $\dim(W) + \dim(V) = n$ and that every vector \vec{w} of W is orthogonal to every vector \vec{v} in V. Prove that for any vector \vec{x} of R^n , there is a unique vector \vec{w} of W and a unique vector \vec{v} in V such that $\vec{x} = \vec{w} + \vec{v}$.
- 4. (14 points) Suppose B = ([2,3,1],[1,2,0],[2,0,3]) and B' = ([1,0,0],[0,1,0],[1,1,1]) are ordered bases for R^3 . Find the change-of-coordinates matrix from B to B'.
- 5. (14 points) Define T on R^3 by $T([x_1, x_2, x_3]) = [x_1, -5x_1 + 3x_2 5x_3, 2x_2 x_3]$. Find the eigenvalues and the corresponding eigenvectors of T.
- 6. (15 points) Let W be the subspace of R^4 spanned by [1,0,1,0],[1,1,1,0] and [1,-1,0,1].
- (a): Find an orthonormal basis for W;
- (b): Find the projection of [1, 1, 1, 1] on W.
- 7. (15 points) Prove that if A is an $n \times n$ complex matrix, then there is a unitary matrix U such that $U^{-1}AU$ is upper triangular.

Solve all the problems. Each problem carries 20 points

- 1. Define $f: \mathbf{R}^n \to \mathbf{R}$.
 - (a) Show that if f is differentiable at $\mathbf{x} \in \mathbf{R}^n$, then f is continuous at \mathbf{x} .
 - (b) For $n \ge 1$, give an example to show that the converse of (a) is NOT valid.
- 2. (a) Prove that if a sequence $\{a_n\}$ in **R** such that the subsequences $\{a_{2n}\}$ and $\{a_{2n+1}\}$ are both convergent to a, then the sequence $\{a_n\}$ is convergent to a.
 - (b) Prove the following Taylor expansion theorem at $x_0=0$: If f is C^{k+1} on the interval I=(-a,a) (a>0), then for any $x\in I$, $f(x)=f(0)+f'(0)x+\cdots+\frac{f^{(k)}(0)x^k}{k!}+\frac{1}{k!}\int_0^x f^{(k+1)}(t)(x-t)^k\,dt\;.$
- 3. Show that if $f: \mathbf{R} \to \mathbf{R}$ is continuous such that for any $x, y \in \mathbf{R}$,

$$f(x+y) = f(x) + f(y) ,$$

then there exists some $a \in \mathbf{R}$ such that f(x) = ax for any $x \in \mathbf{R}$.

4. Define $f_n: [0,1] \to \mathbf{R}$ such that

$$f_n(x) = \frac{x}{nx+1} \ .$$

- (a) Show that f_n is uniformly convergent to $f \equiv 0$ on [0,1].
- (b) Evaluate $f'_n(x)$. Find a function f such that f'_n converges to f pointwisely. Is this convergence uniform?
- 5. In the system

$$-x + y^{2} - u - v^{2} = 0$$
$$x + y + u^{3} + v^{3} = 0.$$

Discuss the solvability for u,v in terms of x,y near the point (x,y,u,v)=(1,1,-1,-1). Also, evaluate $\frac{\partial u}{\partial x}(1,1)$, if exists.

In the following, \mathbb{C} is the set of complex numbers, \mathbb{R} is the set of real numbers, and i is a square root of -1.

Problem 1 Let $g: \mathbb{C} \longrightarrow \mathbb{R}$ and $f: \mathbb{C} \longrightarrow \mathbb{C}$ be continuous functions with g(0) = 0. Assume that $|g(z)| \ge |z|$ and $f(z) = |\sin z| \cdot g(z)$ for all $z \in \mathbb{C}$. Prove that f is differentiable at 0, and that f is not analytic at 0. (20 %)

Problem 2 Let Ω be a nonempty open connected subset of \mathbb{C} , and let $f:\Omega\longrightarrow\mathbb{C}$ be an analytic function. Prove the following statements.

- (i) If there exists $r \in \mathbb{R}$ such that |f(z)| = r for all $z \in \Omega$, then f is a constant function on Ω . (10 %)
- (ii) If $|f(z)|^2 = 6|f(z)| 4$ for all $z \in \Omega$, then f is a constant function on Ω . (10 %)

Problem 3 Let $\gamma(\theta) = 3e^{i\theta}$ for $0 \le \theta \le 2\pi$. Evaluate the following integrals: (20 %)

(i)
$$\int_{\gamma} \frac{dz}{z^3 - 7z^2 + 14z - 8}$$
 (ii) $\int_{\gamma} \frac{e^z}{z(z - 2)^3} dz$

Problem 4 Let $f(z) = z(z-1)^{-2}$ for $z \in \mathbb{C}$ with $z \neq 1$. Prove that if 0 < r < 1, then

$$\frac{1}{2\pi} \int_0^{2\pi} |f(re^{i\theta})| \, d\theta = \frac{r}{1 - r^2} \tag{10 \%}$$

Problem 5 Use the Weierstrass M-Test to prove that the series

$$\sum_{n=1}^{\infty} \frac{\sqrt{n} e^{2iz}}{6n^2 + z}$$

is uniformly convergent on the set $\Omega = \{z \in \mathbb{C} : |z+2-i| < 2\}.$ (15 %)

Problem 6 Let $\gamma(\theta) = e^{-i\theta}$ for $0 \le \theta \le 2\pi$, and let

$$f(z) = \frac{z^4}{z^2 - 4} + \cos z$$
 for $z \in \mathbb{C} - \{2, -2\}$.

Evaluate the integral $\int_{\gamma} z^{-7} f(z) dz$. (15 %)