共十題,每題10分。答題時,每題都必須寫下題號與詳細步驟。

1. Find the determinant of the matrix A where

$$\mathbf{A} = \begin{bmatrix} 1 & 3 & 1 & 3 \\ 4 & 2 & 2 & 1 \\ 4 & 2 & 2 & 3 \\ 3 & 1 & 4 & 1 \end{bmatrix}.$$

2. For the matrix A below, the identity matrices are each 3×3 . Find the inverse of A.

$$\mathbf{A} = \left[\begin{array}{cc} 3\mathbf{I} & 2\mathbf{I} \\ -\mathbf{I} & 4\mathbf{I} \end{array} \right].$$

- 3. Show that the largest characteristic root of a correlation matrix is less than or equal to n, the size of the matrix.
- 4. Let a be a $n \times 1$ vector such that $\mathbf{a}'\mathbf{a} = 1$. Find the eigenvectors and eigenvalues of $\mathbf{I} 2\mathbf{a}\mathbf{a}'$.
- 5. If A B is non-negative, prove or disprove that $A^2 B^2$ is non-negative.
- 6. Let f(x) be a convex function on $D \subset \mathbb{R}$. Show that $\exp[f(x)]$ is also a convex on D.
- 7. Let the function f(x) be defined as

$$f(x) = \begin{cases} x^3 - 2x, & x \ge 1, \\ ax^2 - bx + 1, & x < 1. \end{cases}$$

For what values of a and b does f(x) have a continuous derivative?

8. Show that the sequence $\{a_n\}_{n=1}^{\infty}$ converges, and find its limit, where $a_1=1$ and

$$a_{n+1} = (2 + a_n)^{1/2}, \qquad n = 1, 2, \dots$$

9. Determine whether the following integrals is convergent or divergent:

$$\int_0^\infty \frac{dx}{\sqrt{1+x^3}}.$$

10. Determine the stationary points of the following functions and check for local minima and maxima: $f = 2\alpha x_1^2 - x_1x_2 + x_2^2 + x_1 - x_2 + 1$, where α is a scalar. Can α be chosen so that the stationary point is (i) a point of local minimum; (ii) a point of local maximum; (iii) a saddle point?

- (1) Let X be a random variable with moment generating function M(t) and set $K(t) = \log M(t)$ for those t's for which M(t) exists. Suppose that $E(X) = \mu$ and $Var(X) = \sigma^2$ are both finite. Show that $\frac{d^2}{dt^2}K(t) = \sigma^2$.(10pts)
- (2) Let X be a random variable such that

$$E(X^{2k}) = \frac{(2k)!}{k!}, \quad k = 0, 1, 2, \cdots.$$

Find the moment generating function of X and then deduce the distribution of $X.(15 \mathrm{pts})$

- (3) Let X_1 and X_2 be iid random variables with density f(x) = 2x, $x \in (0,1)$ and let $Y = X_1 + X_2$. Find the density function of Y. (15pts)
- (4) Suppose that X_1, X_2, \dots, X_n are iid random variables with the density function

$$f(x|\alpha) = \frac{\Gamma(3\alpha)}{\Gamma(\alpha)\Gamma(2\alpha)} x^{\alpha-1} (1-x)^{2\alpha-1} \text{ for } x \in [0,1],$$

where $\alpha > 0$, is a parameter to be estimated. Find the Cramer-Rao lower bound on the variance of any unbiased estimate of α .(15pts)

(5) Let X_1, X_2, \dots, X_n be iid random variables with pdf

$$f(x) = \vartheta x^{\vartheta - 1}$$
 for $x \in [0, 1]$.

Let $Y_j = -2\vartheta \log X_j$, $j = 1, 2, \dots, n$. Show that $T_n(\vartheta) = -2\vartheta \sum_{j=1}^n Y_j$ is a $\chi^2(2n)$ random variable. Based on this result find a $100(1-\alpha)\%$ confidence interval for ϑ . (15pts)

(6) Assume that X_1, X_2, \cdots, X_n are iid Poisson(λ) random variables. Let

$$Z_i = \begin{cases} 1 & \text{if } X_i = 0 \\ 0 & \text{if } X_i \neq 0 \end{cases}$$

 $i=1,2,\cdots,n$. Show that $\frac{\sum_{i=1}^{n}Z_{i}}{n}$ is an unbiased estimator of $e^{-\lambda}$. Find an UMVUE (uniformly minimum variance unbiased estimate) of $e^{-\lambda}$.(15pts)

(7) Suppose that X_1, X_2, \dots, X_n are iid $N(\mu, \sigma^2)$ random variables, assuming the mean μ is known. Derive the generalized likelihood ratio test for

$$H_0: \sigma^2 = \sigma_0^2$$
 versus $H_a: \sigma^2 \neq \sigma_0^2$.

Also write down the power function of the test.(15pts)

第 1-5 題, 每題20 分。

- 1. 設r.v.X有一連續的p.d.f.f。
 - (i) 試寫出 $Y = X^2$ 之p.d.f. 之形式。
 - (ii) 若X有標準常態分佈 N(0,1),試求 $Y=X^2$ 之p.d.f.,説明其屬於哪一個分佈族(distribution family) 並求對應之特徵函數

$$\psi(t) = E(e^{itX}) = \int_{-\infty}^{\infty} e^{izx} dF(x), \ t \in R.$$

- 2. (i) 設 X_1 與 X_2 獨立且分別有 $Be(r_1,s_1)$ 及 $Be(r_2,s_2)$ 分佈 。 令 $Y_1=X_1,\,Y_2=X_2(1-X_1)$,試求 Y_1,Y_2 之聯合p.d.f. 。
 - (ii) 設 X_1, X_2 為i.i.d.之 $\mathcal{N}(0,1)$ r.v.'s,試證 $X_1 X_2$ 典 $X_1 + X_2$ 獨立。
- 3. (i) 設X,Y之聯合p.d.f.為 $f(x,y)=k(k-1)(y-x)^{k-2},0< x \le y < 1,k \ge 2$ 為一整數 。 試求E(X|Y),且利用此一結果求E(E(X|Y)) 。
 - (ii) 設X有 $\mathcal{P}(\lambda)$ 分佈,且給定X=k,Y有 $\mathcal{B}(k,p)$ 分佈 。 試證Y與X-Y獨立,並求給定Y=y,X之條件分佈 。
- 4. 設有一射手在打靶練習時,其射擊點之分佈大致如(X,Y),其中X,Y 為二獨立之 隨機變數,且以 $\mathcal{N}(0,\sigma^2)$ 為其共同分佈。
 - (i) 試估計此射手所射擊之點,會落在以靶正中央為圓心,落在圓內之機率為0.5 之半徑r,r>0為何?
 - (ii) 試推估此射手射擊點與靶心的平均距離。
- 5. 設 X_1,X_2,\cdots,X_n 為i.i.d.之隨機變數,且具有共同之連續d.f. F。令 $X_{(1)} \leq X_{(2)} \leq \ldots \leq X_{(n)}$ 為其對應之順序統計量。
 - (i) 試證 $F(X_1)$ 有 $\mathcal{U}(0,1)$ 分佈。
 - (ii) 令 $Y_i = F(X_{(i)}), i=1,\cdots,n$,試求 Y_1,Y_n 之聯合分佈,及 $P(Y_n-Y_1>t),$ $t\in (0,1)$ 。
 - (iii) 試證上述之 Y_n 機率收斂至1, 當 $n \to \infty$ 。

國立中山大學95學年度碩士班招生考試試題

科目:數值分析【應數系碩士班乙組】

共 / 頁第 / 頁

Numerical Analysis

Entrance Exam. for the Master Program

2006

If you think that a problem has been stated incorrectly, indicate your interpretation in your solution. In such cases, do not interpret the problem in such a way that it becomes trivial.

1. (a) [10 points] Show that the Newton forward divided-difference polynomials

$$P(x) = 3 - 2(x+1) + 0(x+1)(x) + (x+1)(x)(x-1)$$

and

$$Q(x) = -1 + 4(x+2) - 3(x+2)(x+1) + (x+2)(x+1)(x)$$

both interpolate the data

ĺ	\boldsymbol{x}	-2	-1	0	1	2
	f(x)	-1	3	1	-1	3

- (b) [10 points] Why does part(a) not violate the uniqueness property of interpolating polynomials?
- 2. (a) [15 points] Describe the method of Steepest Descent.
 - (b) [15 points] Use the method of Steepest Descent to approximate minima to within 0.005 for the function

$$g(x_1, x_2) = 100(x_1^2 - x_2)^2 + (1 - x_1)^2$$

- 3. (a) [10 points] Let $f: \mathbb{R} \to \mathbb{R}$ be a real value function on real numbers. Define the condition number of f and explain the meaning of condition number.
 - (b) [10 points] Let $y_n = \int_0^1 \frac{t^n}{t+5} dt$. Prove $y_k = -5y_{k-1} + \frac{1}{k}, k = 1, 2, ...$
 - (c) [10 points] We propose to compute y_n recursively by relating y_k to y_{k-1} . Therefore we have a problem $f_n : \mathbb{R} \to \mathbb{R}$, and $y_n = f_n(y_0)$. Prove that the condition number of f_n goes to infinity as n goes to infinity.
- 4. [20 points] For any two polynomials f and g on \mathbb{R} , we define $(f,g) = \int_{\mathbb{R}} f(x)g(x) \, dx$. We call that f and g are orthogonal if (f,g) = 0. Let $\{\pi_k(x) : k = 1, 2, \ldots, \pi_k \text{ are monic polynomials.}\}$ be a set of orthogonal polynomials. Prove that three consecutive orthogonal polynomials are linearly relatived.

國立中山大學 9 5 學年度碩士班招生考試試題

科目:微積分【應數系碩士班乙組】

共【頁第【頁

- 1. (15%) 假設 $0 \le x, y \le 1$, 試證 $|x y| \le |e^x e^y| \le 3|x y|$.
- 2. (15%) 有一團錐形容器, 高為 15 公尺, 頂半徑為 5 公尺, 今以每分鐘 2 立方公尺的速度注水入容器中, 間水高為 7 公尺時, 水面上升之速度為多少?
- 3. (15%) 今有一圓柱形的罐頭, 高度為y、底半徑為x。請問在體積固定情況下, 此罐頭有最小表面制 時,x:y 應為多少?
- 4. (20%) 請繪出 $y = \sqrt{x^2 + 1} x + 1$ 之圖形, 並繪出遞增、遞減、凹凸與漸近線情形。
- 5. (15%) 求函數 $f(x,y,z) = x^4 + y^4 + z^4$ 在曲面 $x^2 + y^2 + z^2 = 1$ 上之最大值與最小值。
- 6.~(20%) 令S爲曲面 $x^2+y^2=z^2$ 及z=1所圍成之區域, 求S之體積。

Linear Algebra (注意:每題必需證明或說明清楚,只填答案不計分。)

Let \mathbb{R} be the set of all real numbers, \mathbb{C} be the set of all complex numbers, and $M_{m\times n}(F)$ be the set of all m×n matrices over a field F.

- 1. Let T be the linear transformation from \mathbb{R}^3 to \mathbb{R}^3 with T(1,1,1)=(1,2,3), T(1,-1,1)=(1,0,1) and T(3,-1,-2)=(3,2,0). Find T(x,y,z), the characteristic polynomial, and the kernel of T. (15%)
- 2. Let $L(\mathbb{R}^3, \mathbb{R}^2)$ be the set of all linear transformations from \mathbb{R}^3 to \mathbb{R}^2 . Define (f+g)(v)=f(v)+g(v) and (rf)(v)=r(f(v)) for $f,g\in L(\mathbb{R}^3,\mathbb{R}^2)$, $v\in \mathbb{R}^3$, $r\in \mathbb{R}$. Find a basis and the dimension of $L(\mathbb{R}^3,\mathbb{R}^2)$. (15%)
- 3. Suppose $A \in M_{5\times 5}(\mathbb{R})$. Prove that there exist an orthogonal matrix Q and a matrix $B=[b_{ij}]$ with $b_{ij}=0$ for $i+j \ge 7$ such that A=QB. (15%)
- 4. Prove that if $A \in M_{n \times n}(\mathbb{C})$ then there exist a diagonal matrix D and a nonsingular matrix P such that $(A+PDP^{-1})^n=0$ is the n×n zero matrix. (15%)
- 5. Determine each following statement either is true or false. If true, prove it; if false, give a counterexample. (8%×5)
- (a) Suppose A, $B \in M_{m \times n}(\mathbb{R})$, $x \in M_{n \times 1}(\mathbb{R})$, and $b \in M_{m \times 1}(\mathbb{R})$. If the linear systems Ax=b and Bx=b have the same solution set, then A and B are similar.
- (b) Suppose A, $B \in M_{n \times n}(\mathbb{R})$. If there exists a uniquely nonsingular matrix C such that A=BC then A and B are nonsingular, too.
- (c) Suppose S and T are linear operators on a finite dimensional vector space V, α and β are ordered bases for V. If $[S]_{\alpha}=[T]_{\beta}$ then S=T where $[S]_{\alpha}=[T]_{\beta}$ are the matrix representations of S and T with respect to α and β , respectively.
- (d) Let α be a basis for a finite dimensional vector space V and $T(\alpha) = \{T(\nu): \nu \in \alpha\}$. If T is a linear operator on V then T is onto if and only if $T(\alpha)$ is a basis for V.
- (e) Let T be the linear operator on \mathbb{R}^3 , $f(x)=(x+1)(x+2)^2$ and $g(x)=(x+1)^2(x+2)$. If f(T)=g(T)=0 is the zero transformation, then T is diagonalizable.

國立中山大學 9 5 學年度碩士班招生考試試題

科目:高等微積分【應數系碩士班丙組】

共/頁第/頁

 ${\bf Entrance\ Exam\ of\ Advanced\ Calculus\ for\ Master\ Programs\ of\ Departments\ of\ Applied\ Mathematics}$

Full marks are 100; Each question is 20 marks.

1. Find the limit of the following sequence $\{x_N\}$,

$$\sqrt{2},\sqrt{2+\sqrt{2}},...,\sqrt{2+\sqrt{2+\sqrt{2}+...}}$$
 involving n squre roots ,...

2. Find the limit

$$\lim_{h \to 0} \frac{1}{h} \int_{x}^{x+h} \frac{du}{u + \sqrt{u^2 + 1}}.$$

3. Find definite integral

$$\int \int_{S} (x^2 + y^2) dx dy,$$

where S is a disk: $x^2 + y^2 \le R^2$, R > 0.

4. Find indefinite integral

$$\int \frac{xe^x}{\sqrt{e^x - 1}} dx.$$

5. Prove that the following functions

$$r^n \cos n\theta$$
, $r^n \sin n\theta$, $n = 1, 2, ...$

satisfy the Laplace equation,

$$\Delta u = \frac{\partial^2 u}{\partial x^2} + \frac{\partial^2 u}{\partial y^2} = 0,$$

where (r,θ) are the polar coordinates, $x=r\cos\theta$ and $y=r\sin\theta$.

In the following, C is the set of complex numbers, \mathbb{R} is the set of real numbers, and i is a square root of -1. For any $z \in \mathbb{C}$, $\operatorname{Re} z$ denotes the real part of z, while $\operatorname{Im} z$ denotes the imaginary part of z.

Problem 1 Prove or disprove the following statements.

(32%)

- (i) Let Ω be a nonempty open subset of \mathbf{C} , and let $f:\Omega\longrightarrow\mathbf{C}$ be a function. If f is differentiable at a point $z_0\in\Omega$, then f is analytic at z_0 .
- (ii) Let Ω be a nonempty open and connected subset of C. For a given analytic function $f: \Omega \longrightarrow C$, let $u(z) = \operatorname{Re} f(z)$ and $v(z) = \operatorname{Im} f(z)$ for $z \in \Omega$. If $\{u(z)\}^2 \{v(z)\}^2 = 1$ for all $z \in \Omega$, then f is a constant function on Ω .
- (iii) There is a real number r > 0 such that $|\sin z| \le r$ for all $z \in \mathbb{C}$.
- (iv) If r > 0, $\rho > 0$ and $\alpha \in \mathbb{C}$, then $\{z \in \mathbb{C} : |z \alpha| < r\} \cap \{e^z : |z| > \rho\}$ contains an infinite number of points.

Problem 2 Let $\gamma(\theta) = 2\cos\theta + i\sin\theta$ for $0 \le \theta \le 2\pi$. Evaluate the line integrals:

(i)
$$\int_{\gamma} \frac{1}{2z^2 + 6z + 1} dz$$
 (8 %) (ii) $\int_{\gamma} \frac{\sin(\pi z)}{(z^2 + 4z + 3)^3} dz$ (10

Problem 3 Let
$$f(x) = \frac{x^2}{x^4 + 5x^2 + 6}$$
 for $x \in \mathbb{R}$. Evaluate: $\int_0^\infty f(x) dx$. (10 %)

Problem 4 Let f be a entire function. Assume that there exist an integer n > 0 and a real number $\lambda > 0$ such that $|f(z)| \le \lambda |z|^n$ for all $z \in \mathbb{C}$. Prove that there exists $\mu \in \mathbb{C}$ such that $f(z) = \mu z^n$ for all $z \in \mathbb{C}$. (10%)

Problem 5 For a given $\alpha \in \mathbb{C}$, let $U = \{z \in \mathbb{C} : 0 < |z - \alpha| < 1\}$, and let $f : U \longrightarrow \mathbb{C}$ be an analytic function. Assume that there exists $r \in \mathbb{R}$ such that $\operatorname{Re} f(z) < r$ for all $z \in U$. Prove that α is a removable singularity of f.

Problem 6 Let $\Delta = \{z \in \mathbb{C} : |z| < 1\}$, and let $f : \Delta \longrightarrow \Delta$ be an analytic function. Prove that f is a Möbius transformation if there exist distinct points α and β in Δ such that

$$\frac{|f(\beta) - f(\alpha)|}{|1 - \overline{f(\alpha)}|f(\beta)|} = \frac{|\beta - \alpha|}{|1 - \overline{\alpha}|\beta|}$$
(15 %)