國立中山大學九十三學年度碩士班招生考試試題

科目: 基礎數學A (應用數學系碩士班甲組)

共/頁第/頁

共十題, 每題10分。答題時, 每題都必須寫下題號與詳細步驟。

1. Solve the following system of linear equations

$$\begin{cases} x - 2y + z = 0 \\ 2x + y - z = 2 \\ 4x - 3y + z = 2 \end{cases}.$$

- 2. Let **A** be a $m \times n$ real matrix. Show that $tr(\mathbf{A}^T \mathbf{A}) = 0$ if and only if **A** is a zero matrix.
- 3. Let A be a nonsingular matrix, x, y two column vectors and c a scalar. Show that

$$\begin{vmatrix} \mathbf{A} & \mathbf{y} \\ \mathbf{x}^T & c \end{vmatrix} = |\mathbf{A}|(c - \mathbf{x}^T \mathbf{A}^{-1} \mathbf{y}).$$

4. Let Q be a positive definite symmetric $n \times n$ matrix. For any column vector x there holds

$$\frac{(\mathbf{x}^T\mathbf{x})^2}{(\mathbf{x}^T\mathbf{Q}\mathbf{x})(\mathbf{x}^T\mathbf{Q}^{-1}\mathbf{x})} \geq \frac{4aA}{(a+A)^2}$$

where a and A are, respectively, the smallest and largest eigenvalues of Q.

- 5. Evaluate $\lim_{x\to 0} \frac{\int_0^x \sin(t^3) dt}{\int_0^x \sin(t^2) dt}$
- 6. Use one method of calculus to approximate $\sqrt{10}$ with an error of less than 0.1.
- 7. The circular disk $(x-2)^2 + y^2 \le 1$ is rotated around the y-axis. Find the the volume of the doughnut-shaped region generated.
- 8. Find the radius of convergence and interval of convergence of the power series

$$\sum_{k=0}^{\infty} \frac{2^k (x-4)^k}{\ln(k+2)}.$$

- 9. Let the curve C be given by $x = t^2$ and $y = t^3$. Calculate the length of the arc from t = 0 to t = 3.
- 10. Evaluate

$$\int \int_{x^2+y^2 \le 1} \frac{1}{1+x^2+y^2} \, dx dy.$$

科目: 數理統計 【應用數學系碩士班 甲組】

共/頁第/頁

(1) Let X_i denote the sales to the *i*th customer of a certain market. Assume X_i 's are random and are independent from customer to customer, with $E(X_i) = 25$ and $Var(X_i) = 20, \forall i = 1, 2, \cdots$ The number of customers, N, in a day is assumed to be independent of X_1, X_2, \cdots and follow a Poisson distribution with mean of 100 customers, that is

$$P(N=i) = \frac{e^{-100}(100)^i}{i!}, i = 0, 1, 2, \cdots$$

Find the variance of the sales in one day, namely $Var(S_N)$ where $S_N = X_1 + X_2 + \cdots + X_N$. (15 pts)

- (2) A random variable X is said to have a lognormal distribution, if the logarithm of X has a normal distribution. Let X_1, X_2, \dots, X_n be iid lognormal random variables, thus $Y_i = \ln X_i \sim N(\mu, \sigma^2)$. Use invariance principle of maximum likelihood estimation to find the maximum likelihood estimators of $E(X_i)$ and $Var(X_i).(15 \text{ pts})$
- (3) Let (X_1, X_2) be a two dimensional discrete random variable with probability function:

$$P_{X_1,X_2}(x_1,x_2) = \begin{cases} \frac{2}{k(k+1)} & \text{if } x_2 = 1, 2, \cdots, x_1, \text{ and } x_1 = 1, 2, \cdots, k \\ 0 & \text{otherwise,} \end{cases}$$

for a given positive integer k. Find the covariance of X_1 and X_2 .(15 pts)

- (4) Let X_1, X_2, \dots, X_n be iid aniform (0,1) and let $X_{(1)}, X_{(2)}, \dots, X_{(n)}$ denote the order statistics. Define the range as $R = X_{(n)} X_{(1)}$, and the midrange as $V = \frac{X_{(1)} + X_{(n)}}{2}$. Find the margianl probability density functions of R and V, respectively. (20 pts)
- (5) Let X_1, X_2, \dots, X_n be iid binomial (k, ϑ) random variables. Find the uniformly minimum variance unbiased estimator (UMVUE) of the parameter $\tau(\vartheta) = k\vartheta(1 \vartheta)^{k-1}$ which is the probability of exactly one success. (15 pts)
- (6) Suppose that Θ is a random variable that follows a gamma distribution with the following density function:

$$g(\theta) = \begin{cases} \frac{\theta^{\alpha - 1} e^{-\theta}}{\Gamma(\alpha)} & \text{for } \theta \ge 0\\ 0 & \text{for } \theta < 0, \end{cases}$$

where α is an integer, and suppose that conditional on Θ , X follows a Poisson distribution with parameter Θ . Find the unconditional distribution of $\alpha + X$ and establish the relationship between $P(\Theta \leq \vartheta)$ and $P(X \geq \alpha | \Theta = \vartheta)$.(20 pts)

共/頁第/頁

科目:

第1-5題16分,第6題20分。

- 1. 自區間 $\Omega=[0,1]$ 中隨機地取一個點。對 Ω 上之一Borel 集合B,令P(B)=B之 長度=此點會落在B之機率。 义令 $C=\Omega\setminus A$ 為Cantor集合,其中 $A=\bigcup_{n=1}^{\infty}A_n$,而 $A_1=(\frac{1}{3},\frac{2}{3})$, $A_2=(\frac{1}{9},\frac{2}{9})\cup(\frac{7}{9},\frac{8}{9})$,對一般 $n\geq 3$, A_n 為集合 $(A_1\cup\cdots\cup A_{n-1})^c$ 之 2^{n-1} 個子區間的中間 $\frac{1}{3}$ 區間的聯集。 試証P(C)=0。
- 2. 設 X_1, X_2, \cdots, X_n 為i.i.d.之隨機變數,且 $Y = \min\{X_1, \cdots, X_n\}$ 有參數為 λ 之指數分佈。
 - (i) 試求 X_i 之分佈,並説明為那一常見分佈,參數為何。
 - (ii) 又若令 $Y_1 = X_1 X_2$, $Y_2 = X_2$, 試求 Y_1 , Y_2 之聯合分佈,與 Y_1 之邊際分佈,並 説明 Y_1 之分佈為那一常見分佈,參數為何。
- 3. 設給定X=x,0< x<1,Y有幾何分佈,參數為x,又設X有 $\mathcal{B}e(\alpha,\beta)$ 分佈。
 - (i) 試求Y之(非條件)分佈。
 - (ii) 若 $\alpha = \beta = 1$, 試求 $P(X > \frac{1}{2}|Y = y)$, $y = 0, 1, \dots$
- 4. 設有一射手在打靶練習時,其射擊點之分佈大致如(X,Y),其中X,Y 為二獨立之 隨機變數,且以 $\mathcal{N}(0,\sigma^2)$ 為其共同分佈。
 - (i) 試估計此射手所射擊之點,會落在以靶正中央為圓心,半徑為r,r>0之圓 内之機率。
 - (ii) 試推估此射手射擊點與靶心的平均距離。
- 5. 某工廠生產螺絲釘, 每個螺絲釘會是不良品的機率設為p=0.015。
 - (i) 若螺絲釘每100 個裝一盒出售。試求每盒中不良品數,至多只有1個的機率並給出其近似值。
 - (ii) 若欲一盒中良品數有100個以上的機率至少是0.8,則一盒中須放多少個螺絲釘?
- 6. 設 U_1,\cdots,U_n 為一組由 U(0,1) 分佈所產生之隨機樣本。令 $G_n=(U_1U_2\cdots U_n)^{1/n}$ 。
 - (i) 試求 $V_1 = -\log(U_1)$ 之分佈函數。
 - (ii) 試求 $W_n = -\log(G_n)$ 之特徵函數,並說明 W_n 之分佈為那一常見分佈,參數為何。
 - (iii) 試證 $n \to \infty$ 時, G_n 機率收斂至G, G為一常數r.v.,並給出此常數。

國立中山大學九十三學年度碩士班招生考試試題

科目:總性代數 (應數所) (2, 两组)

共/頁第/頁

Linear Algebra (注意:每個題目需證明或說明清楚,只填答案不計分。)

Let \mathbb{R} be the set of all real numbers and $M_{m \times n}(\mathbb{R})$ be the set of all $m \times n$ matrices over \mathbb{R} .

- 1. Let $V = \{(x,y,z) \in \mathbb{R}^3 : x+y+z=0\}$. Define a vector addition "+" and scalar multiplication "*" for V such that (V,+,*) is a vector space over \mathbb{R} . (15%)
- 2. Suppose (a,b,c) and (d,e,f) are linearly independent on \mathbb{R}^3 . Prove that (x,y,z) is a linear combination of (a,b,c) and (d,e,f) if and only if $\det \begin{pmatrix} x & y & z \\ a & b & c \\ d & e & f \end{pmatrix} = 0$. (15%)
- 3. Suppose T is a linear transformation from \mathbb{R}^n to \mathbb{R}^n and the dimension of the image of T is k. To show that there exist ordered bases α and β such that the matrix representation of T with respect to α and β is a diagonal matrix $D=(d_{ij})$ where $d_{ii}=i$ for $i \leq k$, and $d_{ii}=0$ for $n \geq i > k$. (15%)
- 4. Suppose $A \in M_{n \times n}(\mathbb{R})$. Prove that there exist an orthogonal matrix Q and a lower-triangular matrix L such that A=LQ. (15%)
- 5. Determine each following statement either is true or false. If true, prove it; if false, give a counterexample. (8%×5)
 - (a) Suppose $A \in M_{n \times n}(\mathbb{R})$ and there exists $k \in \{2,3\}$ such that $A^k = A$. Then A is diagonalizable.
- (b) Suppose A, $B \in M_{n \times n}(\mathbb{R})$. If A and B have same minimal polynomial then they have the same Jordan canonical from.
- (c) If $r \neq s$ then the matrix $\begin{pmatrix} r & s & s & s \\ s & r & s & s \\ s & s & r & s \\ s & s & s & r \end{pmatrix}$ has at most two eigenvalues.
- (d) If T is a one-to-one linear operator on a vector space V then T is onto.
- (e) Suppose $m\neq n$ and $A\in M_{m\times n}(\mathbb{R})$. If the linear system Ax=b has a solution, then the number of the solutions for the linear system is infinite.

國立中山大學九十三學年度碩士班招生考試試題

科目: 微積分(應用數學多額士班乙組) #/頁第/頁

1. 設
$$g(x)$$
 為一連續函數. $g(x)=2$. $g(x)=-1$.
$$\int_{x}^{2} g(x) dx = 3$$
. 且全 $F(x) = \int_{x}^{2} g(xx) dx$, $x \in R$.
$$\bar{x} F(x)$$
. (12分)

- 2. 設 $f(\alpha)$ 為在 $f(\alpha)$ 通問可二次微分之函數且 $f(\alpha)$ $\leq K$. K > 0. 記明:如果 $f(\alpha)$ 在 (0,1) 內有極大值,則 $|f(\alpha)| + |f(\alpha)| \leq K.$ (16分)
- 3. 求從橢圓 x+xy+y=3 到原桌的最近和最遠的距離 (16分)
- 4. (a) 求 So Sy 1+x dx dy
 - (b) 求 f (xty) dxdy, 其中 D 表示由 y=2xt3 及 y=x² 所圍区域.
 - (c) 用任何横分方法配明: 半徑為R的半球,其体横为 章水。

(以上多小题8分,第4趟共24分)

5.
$$\lim_{x\to 0} \frac{\sin^2 x \cos(2x) + \tan x}{2 \sec^2 x \cos(3x) - 2} \tag{15.5}$$

6.
$$\overrightarrow{ig} f_{12}(x,y) = \frac{\partial}{\partial y} \left(\frac{\partial}{\partial x} f(x,y) \right). f_{21}(x,y) = \frac{\partial}{\partial x} \left(\frac{\partial}{\partial y} f(x,y) \right).$$

$$f_{21}(x,y) = \begin{cases} \frac{xy(y^{2} - x^{2})}{x^{2} + y^{2}}, & (x,y) \neq (0,0) \\ 0 & (x,y) = (0,0) \end{cases} \overrightarrow{f}_{12}(0,0) \overrightarrow{f}_{21}(0,0)$$

科目:數值分析 【應用數學系碩士班 乙組】

共/頁第/頁

Entrance Exam of Numerical Analysis for the Master program

Twenty points for each problem. Please write down all the detail of your computation and answers.

- 1. Describe convergence and stability for numerical methods, give relations between them, and provide examples to explain your answers.
 - 2. Suppose that there exists a root of f(x) = 0, and $0 \le m \le f'(x) \le M$. Prove that

$$x_{n+1} = x_n - \lambda f(x_n)$$

yields the convergent sequence $\{x_n\}$ to the root for arbitrary $x_0 \in (-\infty, \infty)$ and $0 < \lambda < 2/M$.

- 3. Give the trapezoidal and midpoint rules for the integral, $I = \int_a^b f(x) dx$. Show that when $f''(x) \ge 0$ on [a, b], the approximate integrations by the trapezoidal and midpoint rules are the upper and lower bounds of I, respectively.
 - 4. Derive the error bounds for the trapezoidal rule in two dimensions:

$$\int_0^h \int_0^k g(x,y) dx dy \approx \frac{hk}{4} (g(0,0) + g(h,0) + g(0,k) + g(h,k)).$$

5. Given an original image $\{\phi_{ij}\}$ and other two images, $\{u_{ij}\}$ and $\{v_{ij}\}$, consisting of 256 × 256 pixels with 256 greyness levels. Form a linear combination

$$\{w_{ij}\} = \alpha\{u_{ij}\} + \beta\{v_{ij}\}.$$

Provide a numerical method to seek the parameters α and β such that the combined image $\{w_{ij}\}$ is best approximate to the original image $\{\phi_{ij}\}$.

Entrance Advanced Calculus for the Master program

*Twenty points for each problem. Please write down all the detail of your computation and answers.

1. Prove

$$\{\int_a^b w f(x)g(x)dx\}^2 \leq \{\int_a^b w f^2(x)dx\}\{\int_a^b w g^2(x)dx\},$$

where $w \geq 0$ on [a, b].

2. Determine whether the following singular definite integral is convergent or not,

$$\int_{e}^{10} \frac{dx}{x \ln x \ln(\ln x)}.$$

3. Find the sum of the limit

$$\lim_{n \to \infty} (\frac{n}{n^2 + 1^2} + \frac{n}{n^2 + 2^2} + \dots + \frac{n}{n^2 + n^2}).$$

4. Evaluate the integral on three dimensions,

$$I=\int\int\int_{\Omega}(x^2+y^2)dv,$$

where the integration region Ω is surrounded by the rotating parabola $z=x^2+y^2$ and the plane z=1.

5. Prove that the functions $r^n \cos n\theta$ and $r^n \sin n\theta$ satisfy the Laplace equation,

$$\Delta u = \frac{\partial^2 u}{\partial x^2} + \frac{\partial^2 u}{\partial y^2} = 0,$$

where (r, θ) are the polar coordinates, $x = r \cos \theta$ and $y = r \sin \theta$.

In the following, C is the set of complex numbers, \mathbb{R} is the set of real numbers, and i is a square root of -1.

Problem 1 Let $C = \{z \in \mathbb{C} : \frac{|z-i|}{|z+2|} = 2\}$. Prove that C is a circle, and find its center and radius. (10 %)

Problem 2 Let $f(z) = |1 - \cos z|$ for $z \in \mathbb{C}$.

(i) Prove that
$$f$$
 is differentiable at 0. (10 %)

(ii) Prove that
$$f$$
 is not analytic at 0. (10 %)

Problem 3 Let $\gamma(\theta) = 2e^{i\theta}$ for $0 \le \theta \le 4\pi$. Evaluate: $\int_{\gamma} \frac{1}{(2z+1)(z-3)} dz$ (10 %)

Problem 4 Let
$$\gamma(\theta) = 3e^{i\theta}$$
 for $0 \le \theta \le 2\pi$. Evaluate $\int_{\gamma} \frac{|dz|}{|2z-1|^2}$. (15 %)

Problem 5 Let $\Omega = \{z \in \mathbb{C} : 0 < |z| < 3\}$, and let $f: \Omega \longrightarrow \mathbb{C}$ be an analytic function. Assume that $|f(z)| \le 3$ for |z| = 1, and that $|f(z)| \le 12$ for |z| = 2. Prove that $|f(z)| \le 3|z|^2$ for $1 \le |z| \le 2$. (15%)

Problem 6 Let T be a Möbius transformation. Assume that T(1) = i, $T(\frac{i}{2}) = 2$, and |T(z)| = 1 for all $z \in \mathbb{C}$ with |z| = 1. Find the transformation T. (15%)

Problem 7 Let $f: \{z \in \mathbb{C} : |z| < 2\} \longrightarrow \{z \in \mathbb{C} : |z| < 1\}$ be an analytic function with $f(i) = \frac{1}{2}$. Prove that if |z| < 2, then

$$\frac{|2f(z)-1|}{|2-f(z)|} \le \frac{2|z-i|}{|4+iz|}. \tag{15\%}$$