科目名稱:基礎數學【應數系碩士班甲組】

※本科目依簡章規定「不可以」使用計算機(問答申論題)

題號: 424001

共1頁第1頁

共十題,每題 10 分。答題時,每題都必須寫下題號與詳細步驟。 請依題號順序作答,不會作答題目請寫下題號並留空白。

- 1. Use implicit differentiation to find the tangent line at (2,2) of the graph of the function $2x^3 3y^2 = 4$. Also find the second derivative $\frac{d^2y}{dx^2}$ at (2,2).
- 2. Evaluate the limits.
 - (a) $\lim_{x \to \frac{\pi}{4}} \tan 2x \cdot \tan(\frac{\pi}{4} x)$.
 - (b) Suppose $\lim_{x\to\infty} f'(x) = A$, a > 0, find $\lim_{x\to\infty} \{f(x+a) f(x)\}$.
- 3. Consider a segment of the curve described by the equation $x^{\frac{2}{3}} + y^{\frac{2}{3}} = 1$ in the first quadrant (i.e., when $0 \le x \le 1$ and $0 \le y \le 1$).
 - (a) Find the length of the curve.
 - (b) Find the area of the surface generated by revolving the curve about the x-axis.
- 4. Find the antiderivative $\int \frac{e^x+1}{e^{2x}-e^x+2} dx$.
- 5. Consider the power series $\sum_{n=1}^{\infty} \frac{(-1)^n x^n}{(n+1) \ln(n+1)}$
 - (a) Determine its radius of convergence.
 - (b) Determine its interval of convergence.
- 6. Find and classify the critical points of the function $f(x,y) = x^4 + y^4 4xy$.
- 7. Find the area of the sphere $x^2 + y^2 + z^2 = 4$ lying inside the cylinder $(x-1)^2 + y^2 = 1$.
- 8. Diagonalize the matrix $\begin{bmatrix} 2 & -2 & -2 \\ 3 & -3 & -2 \\ 2 & -2 & -2 \end{bmatrix}$ with the real eigenvalues $\lambda = -2, -1, 0$.
- 9. The given set

$$\left\{ \begin{bmatrix} 3\\0\\-1 \end{bmatrix}, \begin{bmatrix} 8\\5\\-6 \end{bmatrix} \right\}$$

is a basis for a subspace W. Use the Gram-Schmidt process to produce an orthogonal basis for W.

10. Make a change of variable, $\mathbf{x} = P\mathbf{y}$, that transforms the quadratic form $x_1^2 + 10x_1x_2 + x_2^2$ into a quadratic form with no cross-product term. Give P and the new quadratic form.

科目名稱:微積分【應數系碩士班乙組】

題號: 424002

※本科目依簡章規定「不可以」使用計算機(問答申論題)

共1頁第1頁

計算題:共7題,子題分數平均分配。答題時,每題都必須寫下題號與詳細步驟。

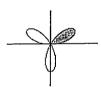
[1]. (10%) Let
$$F(x) = 2^x + \frac{1}{\sqrt{x^2 + 1}} + \int_0^x \cos(\pi s^2) ds$$
. Find $F'(x)$ and $F''(x)$.

- [2]. (16%)
 - (a) Find the Taylor series of $f(x) = \sin(x)$ at $x = \frac{\pi}{2}$.
 - (b) Evaluate $\lim_{x\to 0} \frac{x^3 \sin x^3}{x^9}$
- [3]. (20%) Evaluate the following integrals.

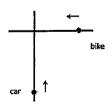
(a)
$$\int_0^{\pi} e^x \cos x dx$$

(a)
$$\int_0^{\pi} e^x \cos x dx$$
 (b) $\int_{-\infty}^{\infty} \frac{1}{x^2 + 2x + 5} dx$

- [4]. (14%) Find the interval of convergence for the power series $\sum_{i=1}^{\infty} \frac{3^{n}}{n} (5x-1)^{n}$.
- [5]. (12%) Find the area of one leaf of the three-leaf rose $r = \sin 3\theta$.



- [6]. (14%) Evaluate the iterated integral $\int_{0}^{\frac{\sqrt{\pi}}{2}} \int_{0}^{\frac{\sqrt{\pi}}{2}} \sin(x^2) dx dy$.
- [7]. (14%) A bike is traveling west at 20 km/h and a car is traveling north at 80 km/h. Both are headed for the intersection of the two roads. At what rate are the bike and the car approaching each other when bike is 30 m and car is 40 m from the intersection?



======= 全卷完 =======

科目名稱:線性代數【應數系碩士班丙組】

題號: 424003

※本科目依簡章規定「不可以」使用計算機(問答申論題)

共1頁第1頁

請詳列計算証明之過程. 作答時請標明題號. 共七題.

1. Find the general solution of
$$\begin{cases} x_1 - x_2 + x_3 + 2x_4 = 2 \\ x_1 + x_2 - 2x_3 - x_4 = 1 \end{cases}$$
 (10%)

2. Let
$$A = \begin{bmatrix} 1 & -1 & 1 \\ 1 & 2 & 0 \\ 2 & 0 & 1 \end{bmatrix}$$
. Is A invertible? Find A^{-1} if it exists. (10%)

3. Let
$$A = \begin{bmatrix} 1 & 0 & 1 & 1 \\ 1 & 2 & -1 & -1 \\ 0 & 1 & -1 & -1 \end{bmatrix}$$
. Find a basis for the null space of A and a basis for the image space of A . (15%).

- 4. Let $A = \begin{bmatrix} 2 & 1 \\ 1 & 2 \end{bmatrix}$. Find an orthogonal P such that $P^{-1}AP$ is diagonal. Also, find a matrix B such that $B^{107} = A$. (15%)
- 5. Let A be an $n \times n$ matrix and $\{\mathbf{x}_1, \mathbf{x}_2, \dots, \mathbf{x}_k\}$ be a subset of \mathbf{R}^n .
 - (a) Prove or disprove: If A is invertible and $\{x_1, x_2, ..., x_k\}$ is independent, then $\{Ax_1, Ax_2, ..., Ax_k\}$ is independent. (10%)
 - (b) Prove or disprove: If $\{\mathbf{x}_1, \mathbf{x}_2, \dots, \mathbf{x}_k\}$ and $\{A\mathbf{x}_1, A\mathbf{x}_2, \dots, A\mathbf{x}_k\}$ are independent, then A is invertible. (10%)
- 6. Define $T: \mathbf{R}^2 \to \mathbf{R}^2$ by T(x,y) = (x-2y,x+y). Find the matrix of T relative to the ordered basis $B = \{(1,1)^T, (-1,1)^T\}$. (15%)

7. Let
$$A = \begin{bmatrix} 2 & -1 \\ 1 & -3 \end{bmatrix}$$
. Find $A^{14} + A^{13} - 5A^{12} + A^5 + A^4 - 5A^3 + A^2 - A + 2I$. (15%)

科目名稱:高等微積分【應數系碩士班丙組】

※本科目依簡章規定「不可以」使用計算機(問答申論題)

題號:424004

共1頁第1頁

1. [10%] Find the Taylor series expansion for the function

$$f(x) = \frac{1}{1 + 2x^2}$$

about x = 0 and find the convergence of interval of the series.

2. [15%] Define $f: \mathbb{R}^2 \to \mathbb{R}$ as

$$f(x,y) = \frac{y^{5/2}}{x^2 + y^2}$$

for $(x, y) \neq (0, 0)$ and f(0, 0) = 0. Is f continuous at (0, 0)? Verify your assertion.

3. [15%] Let $\{a_n\}$ be a positive sequence with $\sum a_n$ divergent. Show that the series

$$\sum \frac{a_n}{1+a_n}$$

also diverges.

4. [15%] Let $\{f_n\}$ be a sequence of continuous functions defined on [0,1], and suppose that the limit $\lim_{n\to\infty} f_n(x) = f(x)$ exists for any $x \in [0,1]$.

(1)[7%] Is f continuous on [0,1]? Verify your assertion.

(2)[8%] Is it true that

$$\lim_{n \to \infty} \int_0^1 f_n(x) \ dx = \int_0^1 f(x) \ dx?$$

Verify your assertion.

5. [15%] Show that the equation

$$x^2 + x + y + \sin(x^2 + y^2) = 0$$

determines a unique solution y as a function x near the point (0,0) and show that this unique solution is differentiable at 0. Find the derivative y'(0).

- 6. [15%] Show that for any continuous function $f:[0,1]\to[0,1]$, there exists a point $\xi\in[0,1]$ for which $f(\xi)=\xi$.
- 7. (1)[8%] Is the intersection

$$\bigcap_{k=1}^{n} V_k$$

of open sets V_1, \ldots, V_n in some metric space X open in X? Verify your assertion. (2)[7%] Is your assertion in (1) still true if the finite intersection is replaced with a countable intersection of open sets in X? Verify your assertion.

科目名稱:線性代數 【應數系碩士班乙組】

※本科目依簡章規定「不可以」使用計算機(問答申論題)

題號: 424005

共1頁第1頁

計算題:共6題,子題分數平均分配。答題時,每題都必須寫下題號與詳細步驟。

- [1]. (18%) Answer the following questions.
 - (a) What is the vector space?
 - (b) What is the linear transformation?
 - (c) What is the rank of a matrix?
- [2]. (14%) Let

$$A = \begin{bmatrix} 1 & 1 & 0 & 1 \\ -2 & -1 & 2 & -2 \\ 0 & 0 & 1 & 3 \\ 3 & 4 & 2 & 5 \end{bmatrix} \quad \text{and} \quad \mathbf{b} = \begin{bmatrix} 0 \\ 1 \\ 2 \\ 1 \end{bmatrix}.$$

- (a) Solve the linear system Ax = b for x.
- (b) Compute det(A).
- [3]. (18%) Let

$$A = \left[\begin{array}{cccc} 2 & -6 & 3 & 1 \\ 0 & -1 & 1 & 0 \\ 0 & -2 & 2 & 0 \\ 0 & -6 & 3 & 3 \end{array} \right].$$

- (a) Find the characteristic polynomial.
- (b) Find the eigenvalues and the corresponding eigenvectors.
- (c) Find a matrix C and a diagonal matrix D such that $D = C^{-1}AC$.
- [4]. (16%) Let

$$A = \begin{bmatrix} 1 & 2 \\ 1 & 1 \\ 1 & 2 \end{bmatrix}$$
 and $\mathbf{b} = \begin{bmatrix} 6 \\ 0 \\ 3 \end{bmatrix}$.

- (a) Use the Gram-Schmidt process to find an orthonormal basis for the column space of A.
- (b) Solve the least squares problem Ax = b.
- [5]. (16%) Let $T: \mathbb{R}^3 \longrightarrow \mathbb{R}^3$ be defined by

$$T(\mathbf{x}) = \begin{bmatrix} x_1 + x_2 + 3x_3 \\ x_1 - x_2 + 2x_3 \\ 3x_1 + 2x_2 \end{bmatrix}.$$

- (a) Find a matrix A such that $T(\mathbf{x}) = A\mathbf{x}$ for each $\mathbf{x} = (x_1, x_2, x_3)^T$ in \mathbb{R}^3 .
- (b) Let $\beta = ([1,1,1],[1,1,0],[1,0,0])$ be an ordered basis of \mathbb{R}^3 . Find the matrix representation $B = [T]_{\beta}$ of T with respect to β .
- [6]. (18%) Let A be an $m \times n$ matrix. Show that
 - (a) The nullspace of $A^T A$ is the nullspace of A.
 - (b) $A^T A$ and A have the same rank.

科目名稱:機率與統計【應數系碩士班甲組】

※本科目依簡章規定「不可以」使用計算機(問答申論題)

題號:424006

共1頁第1頁

答題時,每題須寫下題號與詳細步驟。請依題號順序作答,不會作答題目請寫下題號並留空白。

Notation:

i.i.d.: identically independently distributed; pdf: probability density function; MLE: maximum likelihood estimator; $exp(\theta)$ random variable means a random variable with exponential distribution with a parameter θ and its pdf is $f(x|\theta) = \frac{1}{\theta}e^{-\frac{x}{\theta}}, x > 0$. \bar{X} is the sample mean of X_1, \ldots, X_n . Bin(n, p) indicates the Binomial distribution with n independent Bernoulli trail and each trail has success rate p. Unif[a,b] represents the uniform distribution within [a,b].

- 1. (15%) The joint moment generating function for random variables U and V is defined as $M(s,t)=E(\exp(sU+tV))$. X and Y are independent random variables with common moment generating function $M(t)=\exp(5t^2)$. Let U=X+Y+3 and V=2X-2Y. What is the joint moment generating function for U and V?
- 2. (15%) Assume the distribution of N is Bin(m, p). Conditional on N = n, the distribution of Y is Bin(n, q). What is the unconditional distribution of Y?
- 3. (15%) Let X_1, \ldots, X_{2n} be iid Unif[0,3]. The order statistics are $X_{(1)} < X_{(2)} < \cdots < X_{(2n)}$ What is the expectation of $X_{(n)}$?
- 4. (15%) Let $Y_i \sim Bin(n_i, p_i), i = 1, ..., m$, be mutually independent. Please derive the likelihood ratio test with significance level α for the null hypothesis

$$H_0: p_1 = \ldots = p_m$$

against the alternative hypothesis that not all the p_i are equal. You have to specify the test statistic and the asymptotic rejection region.

- 5. (20%) X_1, \ldots, X_n are i.i.d $\exp(\theta)$. Please answer the following questions.
 - (a) (5%) Prove \bar{X} and $\frac{X_1}{\bar{X}}$ are independent.
 - (b) (15%) Use (a) to derive the UMVUE for the parameter $P(X_1 > t) = e^{-t/\theta}$.
- 6. (20%) X_1, \ldots, X_n are independent random variables with X_i being distributed with $N(\mu, w_i \sigma^2)$, where w_i are known constants and μ and σ^2 are unknown parameters).
 - (a) (10%) Please find the MLE for μ .
 - (b) (10%) Calculate and the mean squared errors of the MLE derived from (a) and \bar{X} for μ . Which one has smaller mean squared error (you have to prove your answer)?