科目名稱:基礎數學【應數系碩士班甲組】

※本科目依簡章規定「不可以」使用計算機(問答申論題)

題號: 424001 共1頁第1頁

共十題,每題 10 分。答題時,每題都必須寫下題號與詳細步驟。 請依題號順序作答,不會作答題目請寫下題號並留空白。

- 1. 設 $a_n = \sqrt{1 \times 2} + \sqrt{2 \times 3} + \dots + \sqrt{n(n+1)}$, 求 $\lim_{n \to \infty} \frac{a_n}{n^2}$ 之值爲?
- 2. 已知座標平面上點 $P_n(x_n, y_n)$ 滿足 $(x_{n+1}, y_{n+1}) = (7x_n + 3y_n, 3x_n + 7y_n)$,n 爲非負的整數,其中 $(x_0, y_0) = (1 + a, 1 a)$, $a \in \mathbb{R}$,且 $a \neq 0$ 。若 O 表座標平面的點,試求 $\lim_{n \to \infty} \frac{2}{n} \log \overline{OP_n}$ 之值。
- 3. 計算 $\sum_{k=1}^{20} k^4$ 之值。

4. 設
$$f(x) = \frac{\prod\limits_{k=0}^{50} (x-2k)}{\prod\limits_{k=1}^{50} (x+k)}$$
,求 $\log_2 f'(0)$ 値。

- 5. 若直線 y = 3x + a 與曲線 $y = x^3 + 2$ 有三相異交點,求 a 的範圍。
- 6. 若曲線 $y = 2x x^2$ 與 x 軸所圍部分面積被直線 y = mx 二等分,則實數 m 之值爲何?
- 7. 試證: 半徑爲 r 的球體的體積爲 $\frac{4}{3}\pi r^3$ 。

8. 矩陣
$$A = \begin{bmatrix} 1 & 2 & -1 \\ 2 & 0 & 1 \\ -1 & 1 & 2 \end{bmatrix}$$
,若 $A^3 + aA^2 + bA + cI = O$,求 $a + b + c$ 。

- 9. 令 Ω 爲直線 $y-x=1,\ y-x=2,\ 2x+y=0,\ 2x+y=2$ 所圍成的區域。計算 $\iint_{\Omega} (y-x)(2x+y)\,\mathrm{d}A$ 。
- 10. 求函數 f(x,y) = xy 在曲線 $x^2 + xy + y^2 = 1$ 上之最大值,最小值及其所在之點。

科目名稱:機率與統計【應數系碩士班甲組】 ※本科目依簡章規定「不可以」使用計算機(問答申論題) 題號: 424006

共1頁第1頁

答題時,每題須寫下題號與詳細步驟。 請依題號順序作答,不會作答題目請寫下題號並留空白。

Notation:

i.i.d.: identically independently distributed; pdf: probability density function; MLE: maximum likelihood estimator; $Exp(\theta)$ random variable means a random variable with exponential distribution with a parameter θ and its pdf is $f(x|\theta) = \frac{1}{\theta}e^{-\frac{x}{\theta}}, x > 0$. \bar{X} is the sample mean.

1. (15%) X_1, \ldots, X_n are i.i.d. random variables with mean μ and variance σ^2 . Assume $\mu \neq 0$. What is the asymptotic distribution of

$$\sqrt{n}(\frac{1}{\bar{X}} - \frac{1}{\mu}) + \frac{\sum_{i=1}^{n} X_i^2}{n}$$
?

Express your answer using μ and σ .

- 2. (15%) A stick of unit length is randomly cut into two pieces. Please compute the expected ratio of the length of the shorter piece to that of the longer piece.
- 3. (15%) Let X_1, \ldots, X_n be i.i.d. Exp(1) random variables. Define the random variables Y_1, \ldots, Y_n by $Y_i = 1$ if $X_i \geq 3$ and $Y_i = 0$ if $X_i < 3$. Find the distribution of $\sum_{i=1}^n Y_i$.
- 4. (20%) Let X_1, \ldots, X_n be $Exp(\theta_1)$ random sample and Y_1, \ldots, Y_n $Exp(\theta_2)$ random sample. X's and Y's are independent.

Find the likelihood ratio test of $H_0: \theta_1 = \theta_2$ against $H_a: \theta_1 \neq \theta_2$ with significance level α (You have to specify the test statistic and the rejection region).

- 5. (20%) X_1, \ldots, X_n are i.i.d. Bernoulli(p) random variables. Let $q = P(X_1 = 1, X_2 = 1)$. Find the uniformly minimal-variance unbiased estimator (UMVUE) of q.
- 6. (15%) Let X_1, \ldots, X_n be a random sample from a continuous distribution F (no ties). The distribution of F has mean μ and variance σ^2 . Let X_1^*, \ldots, X_n^* be the sample with replacement randomly chosen from X_1, \ldots, X_n . Let $\bar{X}^* = \frac{\sum_{i=1}^n X_i^*}{n}$. Please Calculate $\text{Var}(\bar{X}^*)$ (Express your answer using σ and n).

.

科目名稱:微積分【應數系碩士班乙組】

※本科目依簡章規定「不可以」使用計算機(問答申論題)

題號:424002

共1頁第1頁

計算題:共7題,子題分數平均分配。答題時,每題都必須寫下題號與詳細步驟。

[1]. (14%) Let

$$f(x) = \begin{cases} \frac{\sin(x^2)}{x^2}, & \text{for } x \neq 0, \\ 1, & \text{for } x = 0. \end{cases}$$

- (a) Is f(x) continuous at x = 0? Why?
- (b) Is f(x) differentiable at x = 0? Why?

[2]. (14%)

- (a) Let $f(x) = 3^x \sin\left(\frac{3\pi}{4}x\right)$. Find the equation of the tangent line at x = 2.
- (b) Let $f(x,y) = 2e^{-(x+1)^2 (y-2)^2}$. Find the equation of the tangent plane at (-1,1).
- [3]. (16%) Let a, b, c > 0. Use any method in calculus to show that
 - (a) the area of an ellipse $\frac{x^2}{a^2} + \frac{y^2}{b^2} = 1$ is πab .
 - (b) the volume of an ellipsoid $\frac{x^2}{a^2} + \frac{y^2}{b^2} + \frac{z^2}{c^2} = 1$ is $\frac{4}{3}\pi abc$.
- [4]. (12%) Determine the interval of convergence for the power series $\sum_{n=1}^{\infty} \frac{(x-2)^n}{n^{3^{n+1}}}.$
- [5]. (20%) Evaluate the following integrals.

(a)
$$\int_{2}^{\infty} (x-2)^{2} e^{-x} dx$$
 (b) $\int_{-1}^{0} \frac{x^{3}-1}{x^{2}-2x+1} dx$

- [6]. (12%) Solve the differential equation $y' + 2y = e^{3x}$ with y(0) = 1.
- [7]. (12%) Show that the Laplace equation $\frac{\partial^2 f}{\partial x^2} + \frac{\partial^2 f}{\partial y^2} = 0$ in the coordinates (r, θ) .

where $x = r \cos \theta$ and $y = r \sin \theta$, is

$$\frac{\partial^2 f}{\partial r^2} + \frac{1}{r} \frac{\partial f}{\partial r} + \frac{1}{r^2} \frac{\partial^2 f}{\partial \theta^2} = 0.$$

科目名稱:線性代數【應數系碩士班乙組】

※本科目依簡章規定「不可以」使用計算機(問答申論題)

題號: 424005

共1頁第1頁

Please write down all the detail of your computation and solution.

1. (15%) Find a, b, c, d such that the linear system

$$\begin{cases} x+y+2z = b \\ 2x + ay - 2z = c \\ 3x + 6y + 3z = d \end{cases}$$

has (1) a unique solution, (2) infinitely many solutions, (3) no solution.

- 2. (15%) Consider the planar transformation F reflects a vector about the line x + y = 0, and then rotates it 30° about the origin. Find the inverse transformation of F.
- 3. (15%) Find the projection matrix onto the plane x y + z = 0 in \mathbb{R}^3 .
- 4. (15%) Let A be an $m \times n$ real matrix and b be an n dimensional real column vector. Show that exactly one of the following statements holds: (1) $A\mathbf{x} = \mathbf{b}$ has a solution \mathbf{x} , (2) $A^t\mathbf{y} = \mathbf{0}$ has a solution \mathbf{y} such that $\mathbf{y}^t\mathbf{b} \neq 0$.
- 5. (20%) Let A be an $n \times n$ matrix. Prove A is diagonalizable if and only if A has n linearly independent eigenvectors.
- 6. (20%) Let A be an $n \times n$ nonsingular matrix and B be an $n \times m$ matrix. State the fastest numerical method to compute (1) determinant of A, (2) $A^{-1}B$. How many arithmetic operations are needed in (1), and what is the minimal memory needed in (2)?

科目名稱:線性代數【應數系碩士班丙組】

※本科目依簡章規定「不可以」使用計算機(問答申論題)

題號: 424003

共1頁第1頁

共六道題。答題時,每題須寫下題號與詳細步驟。 請依題號順序作答,不會作答題目請寫下題號並留空白。

- 1. [10%] Let $\{v_1, v_2, v_3\}$ be a linearly independent set in some vector space. Show that the set $\{v_1 + v_2, v_2 + v_3, v_3 + v_1\}$ is also linearly independent.
- 2. [30%] For any $n \in \mathbb{N}$, denote by $P_n(\mathbb{R})$ the collection of polynomials over \mathbb{R} with degrees less or equal to n. Define a map $T: P_3(\mathbb{R}) \to \mathbb{R}^3$ as

$$T\big(p(x)\big) = \big(p(-1), p(0), p(1)\big)$$

for $p \in P_3(\mathbb{R})$.

- (1) [10%] Show that $P_3(\mathbb{R})$ is a vector space.
- (2) [10%] Show that T is linear.
- (3) [10%] Find bases for the kernel N(T) and range R(T) of T, respectively.
- 3. [15%] Let T be the linear transform on the set $M_n(\mathbb{R})$ of $n \times n$ matrices over \mathbb{R} defined as $T(A) = A^t$, the transpose of $A \in M_n(\mathbb{R})$. Find all eigenvalues of T.
- 4. [15%] Find the Jordan form of the matrix

- 5. [15%] Let A be an $m \times n$ matrix with rank m. Prove that there exists an $n \times m$ matrix B so that $AB = I_m$, the $m \times m$ identity matrix.
- 6. [15%] Let V be a vector space with dimension n. Suppose that $T:V\to V$ is a linear transform and that there exists some vector $v\in V$ satisfying $T^{n-1}v\neq 0$ and $T^nv=0$. Show that T admits the matrix representation

$$\left(\begin{array}{cccc} 0 & 1 & & & \\ & 0 & & & \\ & & & 1 \\ & & & 0 \end{array}\right)$$

with respect to some basis of V.

End of Paper

科目名稱:高等微積分【應數系碩士班丙組】

※本科目依簡章規定「不可以」使用計算機(問答申論題)

題號: 424004 共1頁第1頁

答題時請標示題號並詳列計算及推導過程. 每小題 10 分.

- 1. Let $a_1 = 2$ and $a_{n+1} = \frac{a_n}{2} + \frac{1}{a_n}$ for $n = 1, 2, 3, \dots$
 - (a) Show that $\{a_n\}$ is a decreasing sequence.
 - (b) Does $\{a_n\}$ converge? If yes, find the limit.
- 2. Let $f(x) = x^2 \sin(\frac{1}{x})$ for $x \neq 0$ and f(0) = 0.
 - (a) Is f uniformly continuous on (-1,1)?
 - (b) Is f differentiable on (-1, 1)?
- 3. Let $f(x) = e^{-\frac{1}{x^2}}$ for $x \neq 0$ and f(0) = 0.
 - (a) Is f differentiable at x = 0?
 - (b) Is f analytic at x = 0?
- 4. Let A and B be compact subsets of a metric space (X, d).
 - (a) Is $A \cap B$ compact? Why?
 - (b) Is $A \cup B$ compact? Why?
- 5. (a) Find the absolute maximum and minimum values of $f(x,y)=x^2-2x+y^2-2y+8$ on the disk $x^2+y^2\leq 9$.
 - (b) Evaluate the line integral $\int_C (x^3 dx + y dy)$ where C is the curve $y = x^2 + 1$ from (0, 1) to (2, 5).