國立中山大學八十七學年度碩博士班招生考試試題 (横書式)

科目: 緒分化學(化學所)

共三頁 第一頁

Part I. Choose the best answer and one answer only (40 %)

- 1. The Bohr model of the atom works reasonably well in the calculation of energy levels in hydrogen. What other electron systems can be described by this model?
- (a) all elements in the lithium family (b) all elements in the helium family (c) any one electron system
- (d) only hydrogen and helium (e) only hydrogen
- 2. Using the following Ka values, indicate the correct order of base strength.

HNO₂
$$K_a = 4.0 \times 10^{-4}$$

HF $K_a = 7.2 \times 10^{-4}$
HCN $K_a = 6.2 \times 10^{-10}$

- (a) $CN^- > NO_2^- > Cl^- > F^-$ (b) $Cl^- > F^- > NO_2^- > CN^-$ (c) $CN^- > F^- > NO_2^- > Cl^-$
- (d) $CN^- > NO_2^- > F^- > Cl^-$ (e) none of these is correct
- 3. For a weak acid, HX, $K_a = 1.75 \times 10^{-5}$. Calculate the pH of a 1.00 M solution of HX in water.
- (a) 6.00 (b) 2.38 (c) 4.76 (d) 2.50 (e) none of these
- 4. Which of the following statements is false?
- (a) A fluorine atom has a smaller radius than a chlorine atom.
- (b) A neon atom has a smaller radius than an oxygen atom.
- (c) A fluorine atom has a smaller first ionization energy than an oxygen atom.
- (d) A potassium atom has a smaller first ionization energy than a lithium atom.
- (e) All statements are true.

10

15

20

25

To answer questions 5 and 6, consider the reaction $2N_2O_5(g) \rightarrow 4NO_2(g) + O_2(g)$ at 25 °C for which the following data are relevant:

5	$\Delta extsf{H}^{\circ} extsf{f}$	S°
N2O5	11.29 kJ/mol	355.3 J/K mol
NO ₂	33.15 kJ/mol	239.9 J/K mol
O ₂	?	204.8 J/K mol

- 5. Calculate ΔS° for the reaction.(a) 89.5 J/K (b) 249.2 J/K (c) 453.8 J/K (d) 249.2 J/K (e) -115.6 J/K
- 6. Calculate ΔG° for the reaction at 25 °C. (a) -135 kJ (b) 98.7 kJ (c) -25.2 kJ (d) -11.2 kJ (e) 0
- 7. Under conditions of constant pressure, the heat flow that occurs during a chemical change is equal to: (a) ΔE (b) ΔT (c) ΔH (d) ΔV (e) ΔW
- 8. Using Hess's Law and equations 1-3 below, find ΔH° at 25 °C for the oxidation of C₂H₅OH(l):

$$C_2H_5OH_{(1)} + 3O_{2(g)} \rightarrow 3H_2O_{(1)} + 2CO_{2(g)}$$

1.
$$C_2H_4(g) + 3O_2(g) \rightarrow 2CO_2(g) + 2H_2O(1)$$

$$\Delta H^{\circ} = -1411 \text{ kJ}$$
$$\Delta H^{\circ} = -278 \text{ kJ}$$

2.
$$C(graphite) + 3H_2(g) + (1/2)O_2(g) \rightarrow C_2H_5OH_{(1)}$$

3. $C_2H_4(g) + H_2O_{(1)} \rightarrow C_2H_5OH_{(1)} \qquad \Delta H^\circ = -44 \text{ kJ}$

- (a) $\Delta H^{\circ} = 44 \text{ kJ}$ (b) $\Delta H^{\circ} = 632 \text{ kJ}$ (c) $\Delta H^{\circ} = -1367 \text{ kJ}$ (d) $\Delta H^{\circ} = -1742 \text{ kJ}$ (e) none of these
- 9. Given the following two reactions at 298 K and 1 atm, which of the statements is true?

1.
$$N_{2(g)} + O_{2(g)} \rightarrow 2NO_{(g)}$$

2. $NO_{(g)} + (1/2)O_{2(g)} \rightarrow NO_{2(g)}$

(a) ΔH°_{f} for $NO_{2(g)} = \Delta H_{2}$ (b) ΔH°_{f} for $NO_{(g)} = \Delta H_{1}$ (c) $\Delta H_{1}^{\circ} = \Delta H_{2}$ (d) ΔH°_{f} for $NO_{2(g)} = \Delta H_{2} + (1/2)\Delta H_{1}$

 ΔH_1

 ΔH_2

(e) none of these is true

15

10

20

(模

科目: 综分化學(化學所)	共三頁第
10. Which set of 4 quantum numbers, n, l, m1, and s, are unacceptable for	any system?
(a) 1 0 0 1/2 (b) 1 0 0 -1/2 (c) 4 3 3 1/2 (d) 6 2 0 -1/2 (e) 4 2 3 1/2	
11. How many bonding and antibonding electrons are there in the $[F_2]^{2-}$ n	molecular ion?
	,
(a) 12 and 8 (b) 10 and 10 (c) 11 and 9 (d) 9 and 11 (e) 8 and 12	
12. The oxidation number of phosphorus, in PO ₂ Cl, is	
(a) -3 (b) +3 (c) -5 (d) +5 (e) +4	
13. The correct name for C ₃ O ₂ is	de (a) combon (II) ovida
(a) carbon oxide (b) tricarbon oxide (c) carbon dioxide (d) tricarbon dioxide	de (e) caroon (II) oxíde
14. How does NaH behave in the presence of water?	·
(a) as a base (b) as an acid (c) is neutral (d) is amphoteric (e) as an oxidizi	ing agent
15. Which one of the following complex ions is paramagnetic?	2-
(a) $[Fe(CN)6]^{4-}$ (b) $[Zn(NH_3)4]^{2+}$ (c) $[CrO4]^{2-}$ (d) $[FeF6]^{4-}$ (e) $[TiCl6]^{2-}$	-
16. Calculate K _{sp} for Hg ₂ Cl ₂ given the following data:	-0.268 V
11g2C12 (s) 4 2C -> 211g(t) 1 2C1 (aq)	-0.79 V
(1162) (aq) (aq)	
$Hg_2Cl_2(s)$ $(Hg_2)^{2+}(aq) + 2Cl^-(aq)$ $K_{sp} =$	
(a) 2.02×10^{-18} (b) 1.16×10^{-18} (c) 4.04×10^{-18} (d) 5.55×10^{-19} (e) 7.7	72 x 10 ⁻¹⁰
17. A cell is constructed based on the following reaction 2Al (s) + (Cr ₂ O ₇) ²⁻ (aq) + 14 H ⁺ (aq) \longrightarrow 2Al ³⁺ (aq) + 2Cr ³⁺ (aq)	+ 7H2O (1) E° = +2.99V
Calculate the pH of the cathode compartment if the cell emf is measured to	to be ± 3.01 V when $[Cr^{3+}] = 0.1$
$[Al^{3+}] = 0.30 \text{ M}, [H^+] = ?, \text{ and } [(Cr_2O_7)^{2-}] = 0.55 \text{ M}$	to 00 +5.01 * when [ex] = 6.5
(a) 0.94 (b) 0 (c) 1.5 (d) 3.6 (e) 4.8	1 mg 10-55 1 50 0 1 - 50
18. Calculate the pH of a mixture of 50.0 mL of 0.100 M CH ₃ CO ₂ H (K _a	= 1./5 x 10 ⁻⁵) and 50.0 mL of 0
M NaOH.	
(a) 7.000 (b) 5.272 (c) 9.123 (d) 8.728 (e) 7.282	<u>.</u>
19. What mode of decay is found in heavy elements that is not found in li	
(a) beta capture (b) beta emission (c) positron emission (d) alpha emission	
20. The melting and boiling points increase for the homologous series (Ci	nH2n+2) starting with $n=5$ to $n=$
because of an increase in	
(a) hydrogen bonding (b) dipole-dipole forces (c) dipole-induced dipole f	forces (d) London forces
(e) the number of double bonds	
Part II. (20%)	,
1. A simple way to examine deviations from ideality is to look at the com $z = PV/nRT$	npressibility factor (z).
The most common behavior involves an initial negative deviation followers	ed by positive deviations, as sho
following figure. Consider oxygen gas at 0 °C as an example. Under cond	ditions where z is less than 1, the
pressure is (lower or higher) than that of an ideal gas because of	

2. (a) The order of acidity of boron halides (BF3, BCl3, and BBr3) is _____

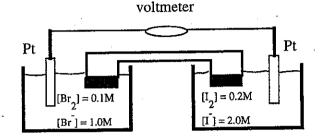
(b) The order of acidity of H3AsO3, H2SO4, H2SeO3, HClO4, H2SO3 is

(c) The point group of benzene is _____

(横木式) 國立中山大學八十七學年度碩博士班招生考試試題

科目: 综合化果(化學所)

共三頁 第三頁


10

15

20

25

3. Refer to the cell diagrammed below.

$$Br_2 + 2e^- \rightarrow 2Br^- \qquad E^\circ = 1.09 \text{ V}$$

 $I_2 + 2e^- \rightarrow 2I^- \qquad E^\circ = 0.54 \text{ V}$

- (a) What is the value of E cell?
- (b) What species is oxidized?
- (c) Which electrode (left or right) is the cathode?
- (d) What is the value of the equilibrium constant at 25 °C for the net chemical reaction?

Part III. (40%)

- 1. For the OSF4 molecule
- (a) Draw the Lewis structure.
- (b) Give the geometry of the molecule including expected distortions.
- (c) Indicate the polarity of the molecule.
- 2. For the molecule NO
- (a) Draw the molecular orbital energy diagram.
- (b) Give the molecular orbital description.
- (c) Give the bond order in this molecule.
- (d) Compare the bond energies in NO+, NO, NO-.
- (e) Give the magnetic properties of NO+, NO, NO-.
- 3. Explain the following items: (a) concentration cell (b) blackbody radiation (c) Heisenberg uncertainty principle (d) electron affinity (e) degenerate
- 4. Calculate the pH of a 5 x 10^{-5} M solution of phenol ($K_a = 1.05 \times 10^{-10}$).

20

10

15

(###) 國立中山大學 87 學年度碩博士班招生考試試題 科 目:物理化学兴分析(七学(化學所) #3頁第1頁

分析化學部分(50%)

1.(12%) 單選(答錯倒扣一分)

- (a) (3%) 1 ppm of Cu^{2+} (atomic weight = 63.5) is equivalent to ① 63.5 ng/L ② 63.5 μ g/L ③ 63.5 mg/L ④ 1 ng/L ⑤ 1 μ g/L ⑥ 1 mg/L
- (b) (3%) If a weak base is too weak to titrate in water, which solvent in the following would be more suitable than water for the titration of this base with HClO₄ as the titrant?

① acetone ② methanol ③ ethanol ④ ammonia ⑤ acetic acid

(c) (2%) Which of the following electrode is where only oxidation reactions will take place?

① anode ② cathode ③ reference electrode ④ counter electrode

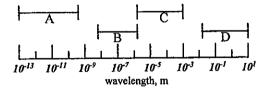
® working electrode ®auxillary electrode ® NHE

(d) (4%) The amino acid arginine has the following forms:

 H_3Arg^{2+} $\xrightarrow{pK_1 = 1.82}$ H_2Arg^{+} $\xrightarrow{pK_2 = 8.99}$ HArg $\xrightarrow{pK_3 = 12.48}$ Arg^{-} What would be the approximate ratio of the dominant form to the overall arginine at pH = 10.0? 0 40% 0 50% 0 60% 0 70% 0 80% 0 90% 0 100%

2.(8%) 單選(答錯倒扣一分)

The following diagram shows four wavelength ranges of electromagnetic radiation.


- (a) (2%) Which one is the range employed in IR spectroscopy?

 ① range A ② range B ③ range C ④ range D ⑤ none of these ranges
- (b) (2%) Which one is the range employed in UV/Vis spectrometry?

 ① range A ② range B ③ range C ④ range D ⑤ none of these ranges
- (c) (2%) Which one is the range employed in chemiluminescence measurements?

 ① range A ② range B ③ range C ④ range D ⑤ none of these ranges
- (d) (2%) Which one is the range employed in ESCA?

 ① range A ② range B ③ range C ④ range D ⑤ none of these ranges

3. (5%) Calculate the pH of a solution prepared by dissolving 14.998 g of NaH₂PO₄ (fw 149.98 g) and 17.196 g Na₂HPO₄ (fw 171.96 g) in 500 mL deionized water. (The K₁, K₂, and K₃ for phosphoric acid are 7.11 × 10⁻³, 6.34 × 10⁻⁸, and 4.2 × 10⁻¹³, respectively.)

1.0

15

20

25

25

20

10

(###) 國立中山大學 87 學年度碩博士班招生考試試題 科 目: '扮 理(七学児分析(七字(化學所) +3 页 第 2 页

- 4. (6%) The following calibration data were obtained by an instrumental method for the determination of Pb²⁺ in aqueous solution.
 - (a) (3%) Calculate the calibration sensitivity.
 - (b) (3%) Calculate the detection limit for this method.

[Pb ²⁺] (ppm)	No. of Replications	Mean Analytical Signal, S	standard deviation, ppm
0.00	25	0.031	0.0044
2.00	5	0.131	0.0039
4.00	5	0.231	0.0052
6.00	5	0.331	0.0046
8.00	5	0.431	0.0050
10.00	5	0.531	0.0048

10

15

20

25

5. (a) (3%) Define "internal standard methods".

10

15

- (b) (3%) Why is the internal standard method often employed in plasma emission spectrometry?
- 6. (4%) Use the data in the following table and Beer's law to evaluate the missing quantities (a) and (b). (The molecular weight of the analyte is 250.)

A	% T	€	b	c
absorbance	transmittance	molar absorptivity	(cm)	(M)
0.842	(a)	7.73 x 10 ³	2.00	(b)

- 7.(5%) The efficiency of chromatographic columns can be approximated by the expression $H = B/u + C_S u + C_M u$ where H is the plate height, and u is the linear velocity of the mobile phase, B is the longitudinal diffusion term, C_S and C_M are the mass-transfer coefficients.
 - (a) (3%) According to this equation, is it correct to say that a column without packing particles has a better column efficiency than those with packing particles? You need to provide your reason.
 - (b) (2%) Why does the minimum in a plot of plate height versus flow rate occur at lower flow rates with liquid chromatography than with gas chromatography?
- 8. (4%) Draw a schematic diagram of a Michelson interferometer. The diagram should include mirrors, light source, detector, and sample.

的 國立中山大學 PP 學年度碩博士班招生考試試題 科 目: 物理化学义分析化学(化學所) *3 页 第3 页 物理化学部分(50%)

9. (10 points) The vapor pressure of nitric acid is as follows:

10

15

25

20 70 80 90 100 P/ Torr 14.4 47.9 133 208 467 670 937 1282

What is the normal boiling point and the enthalpy of vaporization of nitric acid? Note: Clausius-Clapeyron equation is good for this question.

- 10. (7 points) Estimate the lifetime of a state that gives rise to a line of width of 0.1 cm⁻¹
- 11. (16 points) Explain the following terms: (a) Secular determinant (b) Hückel approximation (c) Coulomb integral (d) Resonance integral (e) Variational principle (f) Born-Oppenheimer approximation (g) Semi-empirical quantum calculation (h) Fermi level.

10

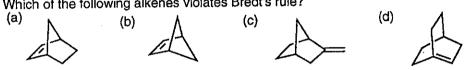
15

20

25

- 12. (7 points) The wavefunction $\Phi(\phi)$ for the motion of a particle on a ring is of the form $\Phi(\phi) = Ne^{im\phi}$. Determine the normalization constant N.
- 13. (10 points) The following data have been obtained for the decomposition of N₂O₅ (g) at 67 °C according to the reaction $2N_2O_5 \longrightarrow 4N_{2(g)} + O_{2(g)}$. Determine the order of the reaction, the rate constant, and the half life. It is not necessary to obtain the result graphically, you may do a calculation using estimates of the rates of change of concentration.

5.00 t/time 1.00 2.00 3.00 4.00 [N2O5]/(molL-1) 1.000 0.705 0.497 0.349 0.246 0.173 10


15

20

25

國立中山大學八十七學年度碩博士班招生考試試題目:有机化學以無机化學(化學所) *5

- I. Choose the best answer and ONE answer only. (40%; 2% each)
- 1. Which of the following molecule will have a net dipole moment?
 - (a) CCI_4 (b) $H_2C=CH_2$ (c)
- 2. Which of the following alkenes violates Bredt's rule?

- 3. Which of the following additions to 2-methylpropene occurs with anti-Markovnikov
 - (a) Catalytic hydrogenation (H₂/Pt) (b) Addition of HOBr (c) Addition of HBr in the presence of ROOR (d) Addition of HI
- 4. Which of the following alkyl halides would be suitable for formation of a Grignard reagent?
 - (b) (CH₃)₂NCH₂CH₂Br (a) H2NCH2CH2Br (d) BrCH₂CH₂CH₂CN (c) CH₃CCH₂CH₂Br
- 5. The kind of spectroscopy which is best for determining the functional groups in a molecules is (c) MS (d) NMR (a) UV (b) IR

15

20

- 6. Which of the following compounds would be the most reactive dienophile?
 - (b) EtO2CCH=CHCO2Et (a) CH₂=CHCH₃
 - (d) CH₂=CHOCH₃ (c) $CH_2=CH_2$
- 7. The following reaction is best accomplished with:

- (b) Na₂Cr₂O₇/H₂SO₄ (c) hot nitric acid (a) Lucas' reagent
- (d) Collins reagent

(###) 國立中山大學八十七學年度碩博士班招生考試試題 科 目: 有機心學 樂忽机化了(化學所) 共5頁 第2頁

		_	
	8. Which of the following dienes would undergo a Diels-Alder reaction? (a) 3-methylenecyclohexene (b) 3-methyl-1,4-cyclohexadiene (c) 2-methyl-1,3-cyclohexadiene (d) 1,4-cyclohexadiene		
5	9. Which of the following compounds is the strongest acid? (a) 1-pentene (b) 1,4-pentadiene (c) cycloheptatriene (d) cyclopentadiene	5	,
	10. The reagent which will differentiate between a ketone and an aldehyde is (a) 2,4-D reagent (b) Tollen's reagent (c) Br ₂ /CCl ₄ (d) sodium	T	
	11. The test that can differentiate between primary alcohol and tertiary alcohol is (a) Tollen's test (b) Baeyer test (c) Sodium fusion test (d) Lucas test	-	
10	12. Which compound would be expected to show IR absorption at 2250 cm ⁻¹ ? (a) CH ₃ CH ₂ CH ₂ CN (b) CH ₃ CH ₂ CH ₂ OH (c) CH ₃ CH ₂ CH ₂ CO ₂ H (d) CH ₃ CH ₂ CH ₂ C(O)NH ₂]1	C
-	13. The most basic amine.		
	(a) CH ₃ CH ₂ NH ₂ (b) (c) (d) (CH ₃) ₃ N		
15	14. A carboxylic acid can be converted to an ester by reaction with (a) diazomethane (b) diborane (c) thionyl chloride (d) bromine and phosphorous tribromide	1	. 5
-	15. Cyclic amides are called (a) lactones (b) lactams (c) aminals (d) imines	-	
20	16. Nucleophilic acyl substitution reactions usually occur (a) with inversion of configuration (b) by an elimination-addition mechanism (c) with retention of configuration (d) by an addition-elimination mechanism	-	2
	17. The two compounds below are best described as		
	NH O II CH₃COH ^{and} CH₃CNH₂		
25	(a) diastereomers (b) enantiomers (c) tautomers (d) cis, trans isomers		2
23			

20

25

國立中山大學八十七學年度碩博士班招生考試試題目: 有機心學 · 新 · 概 · 化學 · (化學 · 所) * 5 页 \$ 3 页

- 18. Penicillins contain
 - (a) a β-lactam ring (b) a β-lactone ring (c) a thioester group
 - (d) a cyclopentene ring
- 19. The reaction of LDA with acetone produces(a) an enol (b) an ylide (c) an enolate i (c) an enolate ion (d) alkylation
- 20. The reaction which is usually catalyzed by acid
 (a) Halogenation of ketone (b) Dieckman cyclization
 (d) Cannizzaro reaction (c) Michael reaction
- II. Show how you would accomplish the following multi-step synthetic conversions. (10%)

20

(横畬式)

() 國立中山大學八十七學年度碩博士班招生考試試題 科目: 有机化学发照机化学(化學所) *5页 *4页 短机化学都分

- Read and then choose a correct item for the following questions. (33pts)
- Which of the following descriptions is correct?
 - (1) The atomic number of Zn is 29.
 - (2) There are 7 valence electrons in N.
 - (3) The atomic radius of I is smaller than that of F.
 - (4) The first ionization energy of He is greater than the second ionization energy of it.
 - (5) The ground state electron configuration of Li is [He]2s¹.
- Which of the following descriptions is correct?
 - (1) The chemical bonding in N₂ molecule is the type of polar covalent bond.
 - (2) The lattice energy of NaCl may be viewed as the bonding energy of NaCl.
 - (3) The bond order of He₂⁺ is one.
 - (4) There is hydregen bonding between ethanol and benzene.
 - (5) Resonance increases the energy of the molecule above that of any single contributing structure.
- Which of the following molecules has the greatest bond angle?
 - (1) BeH₂

10

15

20

25

- (2) CH₂
- (3) NH₂
- (4) OH₂
- (5) BH₂.
- Which of the following descriptions is correct?
 - (1) Cation radii decrease on going down a group.
 - (2) The radii of ions with the same charge increase across the Periodic Table.
 - (3) When an ion can occur in environments with different coordination numbers, its radius increases as the coordination number increases.
 - (4) For a cation in a given coordination number, its ionic radius increases with increasing oxidation number.
 - (5) When a compound with the radius ratio of cation to anion is 0.5, the coordination number of this compound is two.
- Which of the following descriptions is correct?
 - (1) The acidity of sulfuric acid in ethanol is greater than in H₂O.
 - (2) $Fe^{3+}_{(aq)}$ is more basic than $Fe^{2+}_{(aq)}$.
 - (3) NH⁴⁺ is less acidic than NH₂ in ammonia.
 - (4) Na₃PO₄ is an acid in H₂O.
 - (5) SiO₂ is more basic than Ca₃(PO₄)₂.
- The name of [(NH₃)₅CrOCr(NH₃)₅]⁴⁺ is
 - (1) η -oxo-bis(pentaammine chromium(\mathbb{II}))
 - (2) κ-oxo-di(pentaamine chromium(II))
 - (3) μ -oxo-bis(pentaammine chromium(III))
 - (4) μ-oxo-di(pentaamine chromium(II))
 - (5) hapto-oxo-bis(pentaamine chromium(III))

10

15

20

國立中山大學八十七學年度碩博士班招生考試試題目: 有机化学奖短机化学(化學所) *5 (横書式) 共5页第5页

7.	Which of the following descriptions is correct?	
	(1) $\operatorname{Co}^{2+}_{(aq)}$ is more labile than $\operatorname{Ba}^{2+}_{(aq)}$.	
	(2) Hg ²⁺ is a soft base in HgI ₂ .	
	(3) Diethylenetriamine is a didentate ligand.	
	(4) The position of NH ₃ is higher than that of OH ₂ in spectrochemical series.	
	(5) [MnO ₄] is a square planar complex.	
8.	Which of the following descriptions is wrong?	
	(1) Mg is easier to be oxidized than Mn.	
	(2) E ⁰ (Cu ⁺ /Cu)=+0.52V and E ⁰ (Cu ²⁺ /Cu ⁺)=+0.16V, thus Cu ⁺ is not stable in aqueous solution.	
	(3) If a vertical line existed in a Pourbaix diagram, a K _a or K _{sp} may be derived from it.	
	(4) $[Fe(OH_2)_6]^{3+}_{(aq)}$ is more resistant to reduction than $[Fe(CN)_6]^{3-}_{(aq)}$.	
	(5) Both the oxidation potential and reduction potential of water lowered in more basic	
	solution.	
9.	Which of the following descriptions is wrong?	
	(1) The energy of ¹ MLCT excited state in a molecule is always higher than that of	
	corresponding ³ MLCT excited state.	
	(2) The ground term for the configuration 3d ⁵ of Mn ²⁺ is ⁶ S.	
	(3) Hund's rule states that the electron repulsions are weaker in a complex than in a free ion.	
	(4) Ligand-field transitions in an octahedral complex are Laporte forbidden.	
	(5) The electronic absorption spectra of f-block complexes are usually very sharp.	
10.	Which of the following descriptions is wrong?	
	(1) Reduction of [CoCl(NH ₃) ₅] ²⁺ with Cr ²⁺ _(aq) proceeds through the inner-sphere mechanism.	
	(2) The trans effect of CN is greater than that of CH ₃ in the compound (CH ₃) ₃ SiCN.	
	(3) Substitution of $[Pt(PR_3)_4]^{2+}$ with 2Cl ⁻ gives cis- $[PtCl_2(PR_3)_2]$.	
	(4) The rate of substitution by H_2O on $[Mn(OH_2)_6]^{2+}$ is faster than that on $[Ir(NH_3)_6]^{3+}$.	
	(5) NH ₃ is a nucleophile and Ag ⁺ is an electrophile.	
11.	Which one is the most probable compound?	
	(1) $Ru_3(CO)_3$ (2) $Ru_3(CO)_6$ (3) $Ru_3(CO)_9$ (4) $Ru_3(CO)_{12}$ (5) $Ru_3(CO)_{15}$	

proper theory to explain the color of $KMnO_4$ and that the acid strength of Ag^+ and Ca^{2+} in

aqueous solution toward NH3 and F is reversed. (17pts)

25

20

10

15

25