科目名稱:有機化學及無機化學【化學系碩士班】

※本科目依簡章規定「不可以」使用計算機

題號:422001

共5頁第1頁

I. 無機單選題 (3% x 10 = 30%)

- 1. How does the absorption band in the electronic spectra of complexes shift when the ligands I is replaced by Cl and CN respectively?
 - (A) both blue shift

- (B) both red shift
- (C) no shift for both

- (D) blue shift for Cl and red shift for CN
- (E) red shift for Cl and blue shift for CN
- 2. How many species below (i~vi) may be chiral?
 - (i) $[Ru(bipy)_3]^{2+}$
- (ii) CuCl₂(NH₃)₄
- (iii) O₂F₂

- (iv) Dichlorospiroheptane
- (v) PPh₃

(vi) [PtHBrFI]²-

- (A) 1
- (B)2
- (C)3
- (D) 4
- (E) 5

3. Based on the D_{4h} character table below, please choose the correct statement:

D_{4h}	E	2€	C₂	2C ₂ ."	2C₂**	j	2S4	σ_{h}	$2\sigma_{v}$	$2\sigma_d$	Į.	
Aig	1	1	1	1	1	1	Ţ.	1	1	1		$x^2 + y^2, z^2$
A _{2g}	1	1	1	-1	-1	1	Ţ	1	-1	-1	R_Z	
o _{lo}	1	-1	1	1	-1	1	-1	1	1	-1		x2 - x2
B _{2g}	1	~1	4	<u>7</u>	1	1	1	1	 1	1		, xý
, g	2	a	-2	0	0	2	Q	-2	0	0	(R ₁₀ , R ₂)	(xz, yz)
4)0	1	1	1	1	1	-1	-1	-1	-1	-1	, ,	" • • •
1 ₂₀	1	1	1	1·	1	-1	-1	-1	1	1	Z	
Free.	1	~ 1	1	1	1	-1	1	<u>1</u>	-1	1		
20	1	sec \$	1	so:1	1	···1	1	-1	1	1		
ય	2	0	-2	0 .	0	-2	0	2	0	0	(x, j/)	

- (A) The order for this point group is 12.
- (B) Orbital d_{yz} is antisymmetric upon C2 rotation operation.
- (C) Irreducible representation Eu can be both IR and Raman active.
- (D) There are sixteen classes in this point group.
- (E) The dimension for E_g irreducible representation is 4.
- 4. Which trend is correct?
 - (A) Acid strength: BF₃>BCl₃>BBr₃
- (B) pKa: $H_3PO_4>H_2PO_4>HPO_4^{-2}$
- (C) Hardness: Cu⁺>Zn⁺²>Fe⁺³
- (D) Acidity: HClO₄>HClO₃>HClO₂>HClO
- (E) N-B bond length: $Me_2NH \cdot BF_3 > MeNH_2 \cdot BF_3 > NH_3 \cdot BF_3$
- 5. Which of the following ion does not show inert pair effect?
 - $(A) Sn^{+2}$
- (B) Bi⁺³
- (C) Tl^{+1}
- (D) Ga⁺³
- (E) Pb^{+2}

- 6. The predicted magnetic moment for $[NH_4]_2[CoF_4]$ is
 - (A) 0 BM
- (B) 1.9 BM
- (C) 2.9 BM
- (D) 3.9 BM
- (E) 1.0 BM
- 7. Which of the following is not a suitable method to generate hydrogen gas?
 - (A) cracking of petroleum hydrocarbons
- (B) reacting metals with acid
- (C) reacting hydrides with water
- (D) steam reforming of methane

(E) electrolysis of pure water

科目名稱:有機化學及無機化學【化學系碩士班】

※本科目依簡章規定「不可以」使用計算機

題號: 422001 共5頁第2頁

8. Which of the following has the shortest N-O bond length?

- $(A) NO_3^-$
- (B) NO⁺
- (C) NO_2^-
- (D) NO

(E) NO

9. Choose the false statement below (Organometallic Chemistry):

- (A) The C=C stretching frequency in $[Pt(\eta^2-C_2H_4)Cl_3]$ is lower than that in free ethylene
- (B) Cr(NO)₄ is isoelectronic with Ni(CO)₄
- (C) The CO stretching frequency of terminal metal-CO is lower than that of the bridging CO
- (D) Among metallocenes of Fe, Co and Ni, ferrocene has the shortest M-C distance
- (E) The CO stretching frequency in Cr(CO)₆ is higher than that of the [V(CO)₆]

10. Choose the correct statement below (Solid State Chemistry):

- (A) Smaller quantum dots has larger band gap
- (B) Forward bias p-n junction has positive potential applied to the n-type side of the junction
- (C) Meissner effect exists above the critical temperature of the superconducting material
- (D) Fermi level is above the conduction band but lower than the valence band
- (E) Light emitting diode (LED) contains reverse bias junction

II. 無機問答題 (5% x 4 = 20%)

- 1. Please draw the three-dimensional structure for the following species:
 - (A) μ-amido-μ-hydroxobis(tetraaminecobalt)(4+)
 - (B) $(\eta^5 C_5H_5)(\eta^1 C_5H_5)Fe(CO)_2$
- 2. Explain the difference in structure for BCl₃ and ICl₃.
- 3. Write down the term symbols (with J specified) for d^8 ion and specify the ground state term. Explain briefly how you get your answer.
- 4. Even though the trend of covalent radii is N>O>F, the bonding distances in the corresponding diatomic molecules increase (N₂<O₂<F₂). Explain it in MO terms.

有機單選題 (3%×15=45%) III.

11. Which is the correct curly arrows for the reaction below?

(A)
$$HO \xrightarrow{CH_3} HO \xrightarrow{CH_3} HO \xrightarrow{H_1} HO \xrightarrow{CH_3} HO \xrightarrow{H_2} HO \xrightarrow{H_3} HO \xrightarrow{H_4} HO \xrightarrow{H_4} HO \xrightarrow{H_5} HO \xrightarrow{H_$$

$$(D) \overset{\mathsf{H}}{\overset{\mathsf{C}}}{\overset{\mathsf{C}}{\overset{\mathsf{C}}{\overset{\mathsf{C}}}{\overset{\mathsf{C}}{\overset{\mathsf{C}}}{\overset{\mathsf{C}}{\overset{\mathsf{C}}}{\overset{\mathsf{C}}}{\overset{\mathsf{C}}}{\overset{\mathsf{C}}{\overset{\mathsf{C}}}{\overset{\mathsf{C}}}{\overset{\mathsf{C}}}{\overset{\mathsf{C}}}{\overset{\mathsf{C}}{\overset{\mathsf{C}}}{\overset{\mathsf{C}}}{\overset{\mathsf{C}}}{\overset{\mathsf{C}}}{\overset{\mathsf{C}}}{\overset{\mathsf{C}}}{\overset{\mathsf{C}}}{\overset{\mathsf{C}}}{\overset{\mathsf{C}}}{\overset{\mathsf{C}}}{\overset{\mathsf{C}}}{\overset{\mathsf{C}}}{\overset{\mathsf{C}}}{\overset{\mathsf{C}}}{\overset{\mathsf{C}}}{\overset{\mathsf{C}}}{\overset{\mathsf{C}}}{\overset{\mathsf{C}}}}{\overset{\mathsf{C}}}}{\overset{\mathsf{C}}}{\overset{\mathsf{C}}}}{\overset{\mathsf{C}}}{\overset{\mathsf{C}}}{\overset{\mathsf{C}}}}{\overset{\mathsf{C}}}{\overset{\mathsf{C}}}{\overset{\mathsf{C}}}{\overset{\mathsf{C}}}{\overset{\mathsf{C}}}}{\overset{\mathsf{C}}}}{\overset{\mathsf{C}}}{\overset{\mathsf{C}}}{\overset{\mathsf{C}}}}{\overset{\mathsf{C}}}}{\overset{\mathsf{C}}}}{\overset{\mathsf{C}}}{\overset{\mathsf{C}}}{\overset{\mathsf{C}}}}{\overset{\mathsf{C}}}}{\overset{\mathsf{C}}}}{\overset{\mathsf{C}}}{\overset{\mathsf{C}}}{\overset{\mathsf{C}}}}{\overset{\mathsf{C}}}}{\overset{\mathsf{C}}}}{\overset{\mathsf{C}}}}{\overset{\mathsf{C}}}}{\overset{\mathsf{C}}}}{\overset{\mathsf{C}}}}{\overset{\mathsf{C}}}}{\overset{\mathsf{C}}}}{\overset{\mathsf{C}}}}{\overset{\mathsf{C}}}}{\overset{\mathsf{C}}}}{\overset{\mathsf{C}}}}{\overset{\mathsf{C}}}{\overset{\mathsf{C}}}}{\overset{\mathsf{C}}}}}{\overset{\mathsf{C}}}}{\overset{\mathsf{C}}}}{\overset{\mathsf{C}}}}{\overset{\mathsf{C}}}}}{\overset{\mathsf{C}}}}{\overset{\mathsf{C}}}}{\overset{\mathsf{C}}}}}{\overset{\mathsf{C}}}}{\overset{\mathsf{C}}}}{\overset{\mathsf{C}}}}{\overset{C}}}{\overset{C}}}{\overset{C}}}{\overset{C}}}{\overset{C}}}{\overset{C}}}{\overset{C}}}{\overset{C}}}{\overset{C}}}{\overset{C}}}{\overset{C}}}{\overset{C}}}{\overset{C}}}{\overset{C}}}{\overset{C}}}{\overset{C}}}{\overset{C}}{\overset{C}}}{\overset{C}}}{\overset{C}}}{\overset{C}}}{\overset{C}}}{\overset{C}}}{\overset{C}}}{\overset{C}}}{\overset{C}}}{\overset{C}}}{\overset{C}}}{\overset{C}}}{\overset{C}}}{\overset{C}}{\overset{C}}}{\overset{C}}}{\overset{C}}}{\overset{C}}}{\overset{C}}}{\overset{C}}{\overset{C}}}{\overset{C}}}{\overset{C}}}{\overset{C}}}{\overset{C}}}{\overset{C}}{\overset{C}}}{\overset{C}}}{\overset{C}}}{\overset{C}}}{\overset{C}}}{\overset{C}}}{\overset{C}}{\overset{C}}}{\overset{C}}}{\overset{C}}}{\overset{C}}}{\overset{C}}}{\overset{C}}}$$

12. Which of the following alkyl halides would undergo S_N2 reaction fastest?

- (A) CH_3CH_2 -Br (B) CH_3CH_2 -C1
- (C) $(CH_3)_3C-I$ (D) CH_3CH_2-F

科目名稱:有機化學及無機化學【化學系碩士班】

※本科目依簡章規定「不可以」使用計算機

題號: 422001

共5頁第3頁

13. What is the major product for the reaction below?

- (A) CH₃CH₂CHCH₂Br
- (B) CH₃CH₂CHCH₂Br
- CH₃ (C) CH₃CH₃CCH₄

- CH₃ (D) BrCH, CH, CHCH3
- Br CH₃ (E) CH₃CHCHCH₃

14. How many of these compounds are aromatic?

- (A) 1
- (B) 2
- (C)3
- (D) 4
- (E)5

15. Which position is the most reactive towards electrophilic aromatic substitution?

- 16. Which compound below has chiral center?

 - (A) 2-methylpentane (B) 3-methylpentane
- (C) 2-methylhexane

- (D) 3-methylhexane
- (E) methylcyclohexane

17. Choose the product(s) for the hydroboration of 1-methylcyclopentene

- (A) Equal mixture of 1 and 5 (B) Compound 3 (C) Equal mixture of 2 and 4
- (D) Equal mixture of 4 and 5 (E) Equal mixture of 1 and 2
- 18. Which hydrogen in the molecule is most acidic?

科目名稱:有機化學及無機化學【化學系碩士班】

※本科目依簡章規定「不可以」使用計算機

題號: 422001

共5頁第4頁

19. What is the correct product for the reaction below:

$$\mathrm{(D)} \quad \boxed{\bigcirc \\ \mathrm{OCH_2CH_3}}.$$

20. Which of the following can be consider a pair of resonance structure

$$(A) \longrightarrow O$$
 OH

$$(E) \quad \stackrel{\Theta}{\circ} \qquad \qquad \longrightarrow \qquad 0 \qquad \stackrel{}{\longrightarrow} \qquad$$

21. Which structure below is (2Z,4E)-2,4-heptadiene

22. Which of the reactants will give the Diels-Alder reaction with the correct stereochemistry?

23. Which compound below is expected to contain a singlet peak at the proton NMR?

科目名稱:有機化學及無機化學【化學系碩士班】

題號: 422001

※本科目依簡章規定「不可以」使用計算機

共5頁第5頁

24. What is the product for the following aldol reaction followed by dehydration?

25. Which of the following reactions below give the **correct** major product(s).

(1)
$$H_3C$$
— CH_3 $Li/NH_3(I)$ H_3C H CH_3

(5)
$$H_3C$$
— CH_3 $H_2/Pd/C$ H_3C CH_3

- (A) 1,5
- (B) 2
- (C) 1,5,2
- (D) 1,3,4
- (E) All the reactions

IV. 有機問答題 (5%) Give a clear mechanism for the reaction (use curved arrows)

-END-

科目名稱:物理化學及分析化學【化學系碩士班】 ※本科目依簡章規定「不可以」使用計算機

題號: 422002

共5頁第1頁

物理化學部分

(一)選擇題,每題四分,共三十六分(不可於試題紙上作答)

- 1. Which of the following is the smallest hole in a closest-packed lattice of spheres?
 - a. Trigonal
 - b. Tetrahedral
 - c. Cubic
 - d. Octahedral
 - e. None of these
- 2. Aluminum metal crystallizes in a face-centered cubic structure. The relationship between the radius of an Al atom (r) and the length of an edge of the unit cell (E) is:
 - a. r = E/2
 - b. $r = (\sqrt{2}/4) E$
 - c. $r = (\sqrt{3}/4) E$
 - d. r = 2 E
 - e. r = 4 E
- Pure rubidium crystallizes in a body-centered cubic lattice; the edge length of the unit cell is 562 pm. The density of rubidium in g/cm³ is
 - a. $2 \times 85.5 \times 6.02 \times (5.62)^3 \times 10^{-1}$

 - $\frac{2 \times 85.5 \times 10}{6.02 \times (5.62)^3}$
- 4. If the reaction $2HI \rightarrow H_2 + I_2$ is second order, which of the following will yield a linear plot?
 - a. log [HI] vs time
 - b. 1/[HI] vs time
 - c. [HI] vs time
 - d. ln[HI] vs time
- What is the rate law for the following reaction, given the data below? $2NO + H_2 \rightarrow N_2O + H_2O$

Experiment	Initial [NO]	Initial [H ₂]	Initial Rate of
	(mol/L)	(mol/L)	Disappearance of NO
			$(\text{mol/L} \cdot \text{s})$
1	6.4×10^{-3}	2.2×10^{-3}	2.6×10^{-5}
2	12.8×10^{-3}	2.2×10^{-3}	1.0×10^{-4}
3	6.4×10^{-3}	4.5×10^{-3}	5.1×10^{-5}

Rate = k[NO]

科目名稱:物理化學及分析化學【化學系碩士班】

※本科目依簡章規定「不可以」使用計算機

題號: 422002 共 5 頁第 2 頁

- b. Rate = $k[NO]^2$
- c. Rate = $k[NO]^2[H_2]$
- d. Rate = $k[NO][H_2]$
- e. Rate = $k[N_2O][H_2O]$
- 6. The reaction $2N_2O_5(g) \rightarrow O_2(g) + 4NO_2(g)$ is first order in N_2O_5 . For this reaction at 45°C, the rate constant $k = 1.0 \times 10^{-5} \text{s}^{-1}$, where the rate law is defined as

Rate =
$$-\frac{\Delta[N_2O_5]}{\Delta t} = k[N_2O_5]$$

For a particular experiment ($[N_2O_5]_0 = 1.0 \times 10^{-3} \,\text{M}$), calculate $[N_2O_5]$ after 1.0×10^5 seconds

- a. $5.0 \times 10^{-4} \,\mathrm{M}$
- b. $1.0 \times 10^{-3} \,\mathrm{M}$
- c. $3.7 \times 10^{-4} \,\mathrm{M}$
- d. 0
- e. None of these
- 7. Which statement regarding water is true?
 - a. Energy must be given off in order to break down the crystal lattice of ice to a liquid.
 - b. Hydrogen bonds are stronger than covalent bonds.
 - c. Liquid water is less dense than solid water.
 - d. Only covalent bonds are broken when ice melts.
 - e. All of the statements (a-d) are false.
- 8. Which is true about the vapor pressure of methane (CH₄) and ammonia (NH₃)?
 - a. The vapor pressure of ammonia is greater than the vapor pressure of methane because ammonia is polar and methane is nonpolar.
 - b. The vapor pressure of ammonia is less than the vapor pressure of methane because ammonia is nonpolar and the methane is polar.
 - c. The vapor pressure of methane is greater than the vapor pressure of ammonia because methane has more hydrogen bonding than ammonia.
 - d. The vapor pressure of ammonia is equal to the vapor pressure of methane.
 - e. None of the above statements are true.
- 9. The density of the solid phase of a substance is 0.9 g/ cm³ and the density of the liquid phase is 1.0 g/ cm³. A large increase in pressure will
 - a. Lower the freezing point.
 - b. Raise the freezing point.
 - c. Lower the boiling point.
 - d. Raise the triple point.
 - e. Lower the triple point.

(二)計算題,共十四分(不可於試題紙上作答)

- 10. 2.50 mol of an ideal gas with $C_{v,m} = 12.47 \text{ J·mol}^{-1}\text{K}^{-1}$ is expanded adiabatically against a constant external pressure of 1.00 bar. The initial temperature and pressure of the gas are 325 K and 2.50 bar, respectively. The final pressure is 1.25 bar. Calculate the final temperature, $q, w, \Delta U$, and ΔH . $(\Xi \, \hat{\Rightarrow})$
- 11. The average bond enthalpy of the O-H bond in water is defined as one-half of the enthalpy change for the reaction $H_2O(g) \rightarrow 2H(g) + O(g)$. the formation enthalpies, ΔH°_f for H(g) and O(g) are 218.0 and

科目名稱:物理化學及分析化學【化學系碩士班】

※本科目依簡章規定「不可以」使用計算機

題號:422002

共5頁第3頁

249.2 kJ mol⁻¹, respectively, at 298.15 K, and $\Delta \text{H}^{\circ}_{f}$ for $\text{H}_{2}\text{O}(g)$ is -241.8 kJ mol⁻¹ at the same temperature. (五分)

- a. Use this information to determine the average bond enthalpy of the O-H bond in water at 298.15 K.
- b. Determine the average bond energy, ΔU , of the O-H bond in water at 298.15 K. Assume ideal gas behavior.
- 12. What is the enthalpy of 1 mol of an ideal monatomic gas? (四分)

分析化學部分

(三)單擇題,每題兩分,共三十分(不可於試題紙上作答)

- 13. Which of the following statements are INCORRECT?
 - a. 2 ppb $Hg^{2+} = 100 \text{ nM } Hg^{2+}$ (Atomic mass of Hg is 200 amu).
 - b. $1 \text{ fM Hg}^{2+} = 1 \times 10^{-15} \text{ M Hg}^{2+}$.
 - c. 20% w/v sugar solution = 20 g of sugar per 100 mL of solution.
 - d. 1 ppt = 1 nanogram per kilogram
- 14. To determine whether two standard deviations are significantly different from each other, which of the following tests should be conducted?
 - a. t test
 - b. F test
 - c. Q test
 - d. Y test
- 15. The diprotic acid H_2A has $pK_1 = 5.00$ and $pK_2 = 9.00$. Which of the following statements concerning 0.05 M NaHA are INCORRECT?
 - a. The pH of 0.05 M NaHA is 7.0.
 - b. $[H_2A] = 5 \times 10^{-4} M$.
 - c. $[HA^-] = 0.05 M$.
 - d. $[A^{2-}] = 5 \times 10^{-3} \text{ M}.$
- 16. The calibration curve equation for Cu standard was $I = 0.50 \times [Cu] + 4.00$, where I is the intensity and the Cu concentration is in micromole/L. The reagent blank gave value of 8.40 ± 1.18 . What is the detection limit for Cu based on a signal-to-noise ratio of 3?
 - a. $7.08 \, \mu M$.
 - b. 6.08 μM.
 - c. $5.08 \mu M$.
 - d. 4.08 μM.
- 17. Which of the following statements concerning titration are INCORRECT?
 - a. EDTA titrations are best performed at low pH.
 - b. When a weak base is titrated with a strong acid, the pH at the equivalence point is always smaller than 7.0.
 - c. In iodimetry, starch can be added at the beginning of the titration.

d. In iodometry, starch should not be added until immediately before the equivalence point.

科目名稱:物理化學及分析化學【化學系碩士班】 ※本科目依簡章規定「不可以」使用計算機 題號: 422002

共5頁第4頁

- 18. Which of the following statements concerning voltammetry are **INCORRECT**?
 - Current is measured while voltage between working electrode and reference electrode is varied.
 - A dropping mercury electrode is usually used to oxidize analyte. b.
 - Compared to linear scan voltammetry, square wave voltammetry offers the advantages of c. great speed and high sensitivity
 - d. Faradaic current arises from reduction or oxidation of analyte at the working electrode
- 19. Which of the following statements concerning capillary zone electrophoresis are INCORRECT?
 - Peak broadening under ideal conditions is due to longitudinal diffusion. a.
 - h. Capillary zone electrophoresis allows uncharged analytes to be separated.
 - Electroosmotic flow is relatively small at low pH as compared to high pH. c.
 - Electroosmotic flow remains constant with increasing electric field strength. đ.
- 20. Which of the following statements concerning surface spectroscopic methods are INCORRECT?
 - X-Ray photoelectron spectroscopy provides information about oxidation state of analyte.
 - Auger electron spectroscopy uses either monochromatic Aluminum Kα or nonmonochromatic h. Magnesium Kα to eject a photoelectron from an atom at the sample's surface.
 - X-Ray photoelectron spectroscopy is a more qualitative than quantitative technique. c.
 - 10⁻⁸ to 10⁻⁹ Torr is the best when performing an Auger electron spectroscopy measurement. d.
- 21. You would like to resolve to mass signals at m/z = 400.0 and m/z = 400.1 in mass spectrometry. The minimum required resolution is
 - 4000. a.
 - 5000. b.
 - 6000. c.
 - d. 7000.
- 22. The activity coefficients of H^+ and OH^- are 0.86 and 0.805 when the ionic strength is 0.05. The pH of water containing 0.05 M KCl at 25°C is
 - 7.00. a.
 - 7.02. b.
 - 6.98 c.
 - d. 4.00
- 23. Which of the following detector are the best for fixed gas analysis (O₂, N₂, CO, CO₂, H₂S, NO, etc.) in gas chromatography?
 - Flame ionization detector a.
 - Electron capture detector b.
 - UV-Visible absorbance detector c.
 - Thermal conductivity detector d.

24. Which of the following methods are the best for the separation of proteins ranging in molecular

科目名稱:物理化學及分析化學【化學系碩士班】 ※本科目依簡章規定「不可以」使用計算機 題號: 422002 共5頁第5頁

mass from 10000 to 60000?

- a. Ion-exchange chromatography
- b. Ion-pair chromatography
- c. Ion-exclusion chromatography
- d. Size exclusion chromatography
- 25. An increase in which of the following would decrease the resolution between two analytes?
 - a. Particle size
 - b. Column length
 - c. Selectivity factor
 - d. Retention factor
- 26. Which of the following statements concerning fluorescence are **INCORRECT**?
 - a. A fluorescence emission spectrum is a plot of the fluorescence intensity versus wavelength (nanometers).
 - b. A typical fluorescence lifetime is near 10 ns.
 - c. The emission spectrum is typically a mirror image of the absorption spectrum of the $S_0 \to S_1$ transition.
 - d. Emission spectra are typically dependent on the excitation wavelength.
- 27. Which of the following would increase Raman scattering signal of analytes?
 - a. A decrease in the intensity of the source
 - b. Analytes are adsorbed on the surface of colloidal metal particles.
 - c. An increase in the wavelength of the source
 - d. A decrease in the concentration of analytes.

(四)定義下列各項,每題四分,共二十分(不可於試題紙上作答)

- 28. Matrix-assisted laser desorption/ionization mass spectrometry.
- 29. Inductively coupled plasma atomic emission spectroscopy.
- 30. pH meter
- 31. Supercritical fluid extraction
- 32. Flow injection analysis