科目: 微積分(海洋物理研究所碩士班)

共 2 頁 第 頁

1) [Quadratic equations] [10 marks]

Consider the quadratic equation $ax^2 + bx + c = 0$, $a \ne 0$.

- (a) Find the quadratic formula for x.
- (b) Use the discriminant (辨別式) of the quadratic equation, state when the equation will have two real and distinct roots, two real and equal roots, or two distinct imaginary numbers.

2) [Quadratic equation] [5 marks]

For a rectangular with length (6-x) and width x, express its area as quadratic function of x.

For what value of x will the area be a maximum?

3) [Operation with complex numbers] [5 marks]

Given $f(z) = z^2 + 6z + \frac{1}{z}$, where z is a complex number. Find f(3j).

4) [Inverse variation] [10 marks]

If y varies inversely as the cube root of z, and y = 2 when z = 2, find y when z = 8.

5) [Radical equation] [5 marks]

Solve radical equation $\sqrt{x+6} - \sqrt{2x+5} = -1$.

6) [Radical equation] [10 marks]

Solve
$$\frac{1}{x^4} - \frac{8}{x^2} + 7 = 0$$
.

7) [Logarithmic equation] [5 marks]

Solve $\log_4(2x + 4) = 3$.

8) [Limits] [10 marks]

(a)
$$\lim_{x\to 0^+} \frac{\sin(x)}{x}$$

(b)
$$\lim_{x \to 2+} \frac{\ln(2x-3)}{x^2-4}$$

科目: 微積分(海洋物理研究所碩士班)

共2頁第2頁

9) [Derivative by chain rule] [10 marks]

Apply the chain rule to find $\frac{du}{dt}$, given $u = x^2 + 2xy + y^2$ where $x = t \cos t$ and $y = t \sin t$.

10) [Integration by substitution] [10 marks]

Find the indefinite integral of $\int (x^2 \sqrt{x^3 + 4}) dx$.

11) [Integration of trigonometric functions] [5 marks]

Find the indefinite integral of $\int \sin^3 x \cos x \, dx$.

12) [Application of differential calculus] [15 marks]

Sand is falling into a conical pile at the rate of $5 \text{ ft}^2/\text{min}$. If the height of the pile is always twice the radius of the base, how fast is the height increasing when the pile is 3 ft high?

[Hint: The volume of the cone (pile) at any time is expressed as $V = \frac{1}{3}\pi r^2 h$, where r is the radius and h is the height.]

科目: 流體力學【海洋物理研究所碩士班】(選考)

共2 頁第 1 頁

第一部份:定義/數學公式/簡要說明題【50分】

1. [Definition/Equation/Brief Answer: 5% each]

- (1). How can we measure the shear stress in laboratory condition?
- (2). What is a Venturi tube?
- (3). Continuity equation in a two-dimensional incompressible flow.
- (4). Bernoulli equation in a two-dimensional incompressible flow.
- (5). Froude number.
- (6). Absolute pressure.
- (7). Path line of a fluid particle.
- (8). Control volume.
- (9). State the three laws of similarity in modeling a prototype condition.
- (10). Main difference between Eulerian and Lagrangian description of fluid motion.

第二部份:計算題 【50分】

2. [Streamline: 10%]

Given the streamline equation for a fluid particle in a two-dimensional flow field as

 $\frac{dy}{dx} = \frac{v}{u}$. Find the streamline equation when a particle passes the point (1, 1), if the velocity

components are given by u = x and v = y.

3. [Hydrostatic force: 10%]

A water tank as shown is completely filled with water with density 1000 kg/m³. Calculate the water force on the slanted side wall *ABCD* of the tank and the location of this force.

4. [Energy equation: 10%]

Determine the power required for a pump to deliver $0.05~\mathrm{m}^3/\mathrm{s}$ of water at atmospheric pressure through a 100-mm pipe to a building 100 m above sea level. Assume the density of water as $1000~\mathrm{kg/m}^3$, and neglect heat transfer and all internal energy losses when the flow through the pipe.

[Hint: The energy equation applicable may be written as

$$-\frac{dW}{dt} = \rho AV \left[\Delta \left(\frac{p}{\rho} + \frac{V^2}{2} + gz \right) \right]$$
, where W is the work done on the fluid and \(\Delta\$ denotes the

difference of total energy $\left(\frac{p}{\rho} + \frac{V^2}{2} + gz\right)$ between the discharge and the entrance points.

科目: 流體力學【海洋物理研究所碩士班】(選考)

共 2 頁 第 2 頁

5. [Dimensional analysis and similitude: 10%]

Air flows with an average velocity of 10 m/s through a circular pipe having diameter of 250 mm, under the condition at 1 atmospheric pressure and 20°C.

- (1). What must be the average velocity in a model of this flow to be reproduced in a water pipe of 60-mm in diameter, if the flow is dynamically similar to the prototype?
- (2). Find the pressure drop in the prototype, if the pressure drop in the model is 200 kPa.

[Hint 1: In (1), equate Reynolds number for the prototype and model, and in (2) let $\Delta p \approx \rho V^2$.]

[Hint 2: Additional data: kinematic viscosities $v_{air} = 1.51 \times 10^{-5} \text{ m}^2/\text{s}$, $v_{water} = 1 \times 10^{-6} \text{m}^2/\text{s}$; densities $\rho_{air} = 1.204 \text{ kg/m}^3$, $\rho_{water} = 998.3 \text{ kg/m}^3$]

6. [Velocity distribution in a typhoon: 10%]

The eye of a typhoon (tropical cyclone) has a radius R of 20 m and the maximum wind velocity at the edge of the eye is 50 m/s. Find the variation of tangential velocity in the flow field of the typhoon, for the radial distance $r \le R$ (assume rigid body rotation, i.e., forced vortex) and $r \ge R$ (free vortex), respectively.

科目:

共/頁第/頁

國立中山大學海洋物理研究所碩士班入學考試 海洋物理學試題 (總分 100 分)

1. 潮汐(30%)

- (a)何謂大潮?何謂小潮?何謂潮流橢圓?何謂引潮力?(10%)
- (b)請申論模擬淺海(如澎湖地區)海水之潮汐運動時,是否需考慮引潮 力?(10%)
- (c)以下爲澎湖馬公地區之潮位紀錄,請描述其特性(潮差、週期等)·(10 %)

2. 波浪(20%)

- (a)波浪由深海傳至淺海·請問深水波之適用範圍爲何?其相位速度爲何? 能量傳波之速度爲何?(10%)
- (b) 在海邊看到的波浪幾乎都是與海岸垂直,請問這是水波的何種效應? 在受障礙物遮蔽的區域也有波動,請問這是水波的何種效應?(10%)
- 3. 假設香港外海發生地震後產生海嘯,若震央距高雄外海測站500公里,當 地水深200公尺,高雄外海測站水深20公尺,請估計發生地震多少時間 後海嘯會抵達高雄外海測站。(10%)

4. 解釋名詞 (25%)

- (a) El Nino
- (b) 科氏力
- (c) 1 節= ? m/sec
- (d) Ekman spiral
- (e) Internal Wave
- 5. 試繪出海水溫度之典型剖面圖與聲速分布圖。以上兩圖有何相關?何謂 Sound Channel ? (15%)