科目:工程數學【海下海物所碩士班選考】

1. (a) Find the Fourier expansion of the function whose definition in one period is, (10 %)

$$f(t) = 4 - t^2 \qquad -2 \le t \le 2$$

- (b) By the above results and simple sketch one period of f(t), determine is this function odd or even? (10 %)
- 2. If the Laplace transform of y(t) is (10 %)

$$\mathcal{L}\left\{y\right\} = \frac{s+1}{s^2 + s - 6}$$

What is y(t)?

3. Heat is generated at a constant rate r within a rod of finite length, the heat equation with boundary conditions are as follows, solve u(x, t) (20 %)

$$k\frac{\partial^2 u}{\partial^2 x} + r = \frac{\partial u}{\partial t}$$

$$u(0,t) = 0, \quad u(1,t) = u_0 \quad t > 0$$

$$u(x,0) = f(x), \quad 0 < x < 1$$

4.
$$S$$
 為球面 $x^2 + y^2 + z^2 = 4$
$$\vec{F}(x, y, z) = x\vec{i} + y\vec{j} + z\vec{k} ,$$
 求 $\iint_S \vec{F} \cdot d\vec{S} \circ (20\%)$

5. 求矩陣

$$\begin{bmatrix} 1 & 1 \\ -2 & 4 \end{bmatrix}$$

的特徵值(eigen value)及特徵向量(eigen vector)。 (15%)

6. 求解常微分方程式

$$\frac{d^2y}{dt^2} + 2\frac{dy}{dt} + 5y = -\sin t \ \cdot \ (15\%)$$

科目:微積分【海下海物所碩士班選考】

微積分(海下海物研究所碩士班選考)

1. Find out the first derivative of the following function involving with a natural logarithm, (10 %)

$$f(x) = \ln(7x - 14)$$

- 2. Find the integral of $\int e^x \cos x \, dx$ (10 %)
- 3. Find the integral of $\int \frac{dx}{x^2 4}$ (10%)
- 4. Consider a surface described by the following function f in xyz-space. Calculate the volume of the solid defined by f with respect to the square region in the xy-plane whose edges are x = -1, x = 1, y = -1, and y = 1 (20 %)

$$f(x,y) = 3x^2 + 3y^2 + 1$$

- 5. 求 $\lim_{x\to 0} \frac{\sin^{-1} 2x}{\sin^{-1} x}$ 的極限値(5%)。
- 6. 假設波速c(單位m/s)爲位置x(單位)的函數:

$$c = \frac{x^2}{1000}$$

求此波由 x=40 傳到 x=10 需要多少時間。(10%)

7. S 為球面 $x^2 + y^2 + z^2 = 4$

$$\vec{F}(x,y,z) = x\,\vec{i} + y\,\vec{j} + z\,\vec{k}$$
,

科目:微積分【海下海物所碩士班選考】

8. 爲計算積分 $I = \int_0^\infty e^{-x^2} dx$

先求其平方

$$I^{2} = \left(\int_{0}^{\infty} e^{-x^{2}} dx\right) \left(\int_{0}^{\infty} e^{-y^{2}} dy\right) = \int_{0}^{\infty} \int_{0}^{\infty} e^{-x^{2}-y^{2}} dx dy$$

再轉換爲極座標

$$I^2 == \int_0^a \int_0^b e^{-r^2} r dr d\theta$$

請問 (a)上式之積分上限 a、b 是多少? (5%)

(b) 積分 I 是多少? (10%)

科目:流體力學【海下海物所碩士班選考】

- 1. (40%; 5% each) Define and explain the following terms (定義並解釋下列名詞):
 - (a) Reynolds stress
 - (b) Velocity potential
 - (c) Steady state fluid flow
 - (d) Doppler effect
 - (e) Barotropic fluid
 - (f) Boundary layer
 - (g) Dynamic similarity
 - (h) Streakline
- 2. (10%) Consider the Bernoulli equation: $\frac{p}{\rho} + \frac{v^2}{2} + gz = \text{constant}$, where p, ρ , v, g are the pressure, density, speed, gravity constant, respectively; z is the vertical coordinate pointing upwards. List the assumptions that have to be made so that this Bernoulli equation is applicable.
- 3. (15%) A spillway gate formed in the shape of a circular arc is w meter wide, as shown in Figure 1. Find the magnitude and line of action of the vertical component of the force due to all fluids acting on the gate.
- 4. (15%) Consider a 30° reducing elbow as shown in Figure 2. The fluid is water. Evaluate the components of force that must be provided by the adjacent pipes to keep the elbow from moving.
- 5. (20%) Consider a fluid flow that may be described by the following equation:

$$\frac{d\mathbf{v}}{dt} = -\frac{1}{\rho}\nabla p + \mathbf{g}$$

where v, p, g, ρ are velocity, pressure, gravitational force, and density, respectively.

- (a) What are the assumptions that have to be made so that the above equation is valid? (5%)
- (b) Show that, if the flow starts irrotationally, then it remains irrotational all the time. (15%)

Figure 1

Figure 2

科目: 靜力學【海下海物所碩士班選考】

說明:本試卷共六題,總分100分。

1. (15%)

- (1) 請算出圖 1(a) F_1 與 F_2 之合力大小與方向,並算出合力對點 O 的合力矩大小。(5%)
- (2) 請算出圖 1(b) F_1 與 F_2 之合力大小與方向,並算出合力對 z 軸的合力矩大小。(10%)

圖 1 (a)

圖 1 (b)

2. (20%)

- (1) 請算出圖 2(a)系統的質心位置。(10%)
- (2) 請算出圖 2(b)系統的質心位置。(10%)

圖 2 (a)

圖 2(b)

"科目:靜力學【海下海物所碩士班選考】

- 3. (15%) 如圖 3 所示,爲了支撐 500 N 的負載,請問:
 - (1) 圖 3(a) 之施力 P 爲何? (5%)
 - (2) 圖 3(b) 之施力 P 爲何? (10%)

4. (20%) 小孩站在獨木舟尾端,船首靠著大石邊,如圖 4 所示。大石上有一隻烏龜,小孩想走向船頭抓它。如果小孩跟獨木舟的質量各爲 50 公斤及 70 公斤,舟長 4 公尺(質心在船中央),小孩在船首時手還可以向外伸長 1 公尺,請問他抓得到烏龜嗎?。(忽略所有的摩擦力)

- 5. (20%) 如圖 5 所示,一個半徑爲 1 公尺、1 公斤重的圓柱體,從圓心施力 F 要將其拉上高度爲 0.5 公尺的台階。請問:
 - (1) 要拉動圓柱的話,F與水平線夾角 θ 爲多少度時最省力?(10%)
 - (2) 要將圓柱拉動最小的 F 爲多少?(10%)

科目:靜力學【海下海物所碩士班選考】

6. (10%) 有一材質均匀 60 公斤的不等臂蹺翹板,如圖 6 所示。A 端點以抗張力 2000N 纜繩繫住,請問一公斤一個的水泥塊放幾個於 B 點時纜繩會繃斷。

科目:電子學【海下海物所碩士班選考】

- 1. (15%) For the circuit shown in Fig. 1, find the transfer function T(s) = Vo(s) / Vi(s). Is this a high-pass or a low-pass network? What is its transmission at very high frequencies $(s \to \infty)$? What is the corner frequency ω_0 ? For $R_1 = 10 \text{ k}\Omega$, $R_2 = 40 \text{ k}\Omega$, and $C = 0.1 \mu\text{F}$, find f_0 . What is the value of $|T(j\omega_0)|$?
- 2. (15%) The circuit in Fig. 2 utilizes an ideal op amplifier. (a) Find I_1 , I_2 , I_3 and V_X . (5%) (b) If V_o is not to be lower than -13 V, find the maximum allowed value for R_L . (5%) (c) If R_L is varied in the range 100 Ω to 1 k Ω , what is the corresponding change in I_L and in V_O ? (5%)
- 3. (15%) The NMOS and PMOS transistors in the circuit of Fig. 3 are matched with k_n ' (W_n/L_n) = k_p ' (W_p/L_p) = 1 mA/V² and $V_{tn} = -V_{tp} = 1$ V. Assuming $\lambda = 0$ for both devices, find the drain currents i_{DN} and i_{DP} and the voltage v_o for $v_I = 0$ V, +2.5V, and -2.5V.
- 4. (20%) For the common-emitter amplifier shown in Fig. 4, let $V_{CC} = 9$ V, $R_1 = 27$ k Ω , $R_2 = 15$ k Ω , $R_E = 1.2$ k Ω , and $R_C = 2.2$ k Ω . The transistor has $\beta = 100$ and $V_A = 100$ V. Calculate the dc bias current I_E . If the amplifier operates between a source for which $R_{sig} = 10$ k Ω and a load of $R_L = 2$ k Ω , replace the transistor with its hybrid- π model, and find the values of R_{in} , the voltage gain v_o/v_{sig} , and the current gain i_o/i_i .
- 5. (20%) The op amplifier in the circuit of Fig. 5 has an open-loop gain of 10^5 and a single-pole rolloff with $\omega_{3dB} = 10$ rad/s. (a) Sketch a Bode plot for the loop gain. (6%) (b) Find the frequency at which $|A\beta| = 1$, and find the corresponding phase margin. (6%) (c) Find the closed-loop transfer function, including its zero and poles. Sketch a pole-zero plot. (8%)
- 6. (15%) A BJT is specified to have $T_{J \text{ max}} = 150$ °C and to be capable of dissipating maximum power as follows:

40 W at
$$T_C = 25$$
 °C
2 W at $T_A = 25$ °C

Above 25 $^{\rm O}$ C, the maximum power dissipation is to be derated linearly with $\theta_{JC} = 3.12 \,^{\rm O}$ C/W and $\theta_{JA} = 62.5 \,^{\rm O}$ C/W. Find the following: (a) The maximum power that can be dissipated safely by this transistor when operated in free air at $T_A = 50 \,^{\rm O}$ C. (5%) (b) The maximum power that can be dissipated safely by this transistor when operated at an ambient temperature of 50 $^{\rm O}$ C, but with a heat sink for which $\theta_{CS} = 0.5 \,^{\rm O}$ C/W and $\theta_{SA} = 4 \,^{\rm O}$ C/W. Find the temperature of the case and of the heat sink. (5%) (c) The maximum power that can be dissipated safely if an infinite heat sink is used and $T_A = 50 \,^{\rm O}$ C. (5%) (note: θ_{JA} , θ_{JC} , θ_{CS} , and θ_{SA} are the thermal resistances between junction and ambience, junction and transistor case, transistor case and heat sink, and heat sink and ambience, respectively.)

科目:電子學【海下海物所碩士班選考】

Figure 1

Figure 2

Figure 3

Figure 4

Figure 5

科目:海洋學【海下海物所碩士班選考】

- 一、解釋名詞 (10 題、每題 5 分共 50 分) (請在試卷上作答,否則不予計分)
- 1. Continental slope
- 2. Geostrophic current
- 3. Latent heat flux
- 4. Pycnocline
- 5. Storm surge
- 6. Eddy viscosity
- 7. Ekman transport
- 8. Estuarine circulation
- 9. Primary productivity
- 10. CODAR
- 二、申論題 (2 題共 50 分) (請勿在本試題紙上作答,否則不予計分)
- 1.下圖左圖為海水密度之溫鹽特性圖。圖中之兩條直線特別說明最大密度(temp. of max. density)及結冰點(freezing point)隨溫度(y 軸)及鹽度(x 軸)之變化。(a)請敘述淡水湖(例如鹽度 10 psu 以下)表面受冷之結冰過程?(b)鹹水湖(例如鹽度 34 psu)表面受冷之結冰過程又有何不同?(20 分)

2.上圖右圖(摘自南太平洋 Cook Islands Biodiversity 網站)為珊瑚白化程度(12345)與聖嬰指數(SOI)從1979起約20年之時序圖。請問(a)甚麼是 SOI? (b)如何從 SOI 看出那些年有聖嬰現象? (c)聖嬰現象跟珊瑚白化有何關聯?(30分)