科目: 工程數學【光電所碩士班】

共/頁第/頁

May 6, 2001

- 1. Explain the mathematical meanings and their consequences of the following subjects. (Please limit your answer to 75 words or less for each item) (20%)
 - a. Sturn Liouville theorm.
 - b. Riemann surface.
 - c. Gibb's phenomenon.
 - d. Stokes theorem.

In problems 2-5, you must show your work to get full credit.

2. Find the Fourier transform of the following function:

(20%)

$$f(t) = e^{-i\pi t^2}, \quad t \in (-\infty, \infty),$$

where i is the imaginary number.

- 3. a. Write down the differential equation that Bessel functions satisfy (Use z as the independent variable and v as the order variable.) (5%)
 - b. Write down the mathematical symbols for Bessel functions of the first and the second kinds. Explain the differences in mathematical and physical meanings among these functions (10%)
- 4. Given the following system of differential equations:

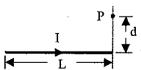
$$\frac{dy_1}{dt} = -ib_1y_1 - icy_2, \quad \frac{dy_2}{dt} = -ib_2y_2 - icy_1,$$

where i is the imaginary number, b_i , b_2 and c are constants

- b. Find the two eigenfunctions and their associated eigenvalues. (15%)
- c. Solve for $y_1(t)$ and $y_2(t)$ if the initial conditions are

$$y_1'(0) = y_{10}, \quad y_2(0) = 0.$$
 (10%)

- 5. a. Evaluate the expression: i^i (5%)
 - b. Solve for the Green's function satisfying given boundary conditions (15%) (Hint: Expand the Green's function in series of eigenfunctions satisfying the same boundary conditions)


$$\left(\frac{\partial^2}{\partial x^2} + \frac{\partial^2}{\partial y^2} + k^2\right) G(x, y) = -\delta(x)\delta(y),$$

$$x \in (-1,1), y \in (-1,1)$$

$$\frac{\partial G(x,y)}{\partial x} = \frac{\partial G(x,y)}{\partial y} = 0, \quad \text{for } x = \pm 1, \text{ or } y = \pm 1$$

Institute of Electro-optical Engineering 2001 Entrance Examination of Electro-magnetics

- 1. Please use $\nabla \times E = -\partial B/\partial t$ and $\nabla \times H = \partial D/\partial t$ to show that the tangential components of E and H fields are continuous across the boundary. Detailed descriptions including your drawings are required (10%).
- 2. A conducting sphere of radius R is surrounded by free space. Initially, a charge density of ρ_0 is distributed uniformly throughout the sphere. Please find the current density J of the sphere at t=0 and $t\to\infty$. The dielectric constant and conductivity of the sphere are ϵ and σ , respectively (6%).
- 3. In free space, charges of magnitude Q are installed in a parallel-plate capacitor. The dimension of the parallel plate is axb, and the spacing between the plates is d. Please find the energy stored in the capacitor (6%).
- 4. Consider an amount Q of positive charge is uniformly distributed on the surface of a conducting sphere of radius r_1 . Given the Laplacian in spherical coordinates $\nabla^2 \phi = \frac{1}{r^2} \frac{d}{dr} (r^2 \frac{d\phi}{dr}), \text{ please determine the potential at every point in the free space surrounding the sphere (6%).}$
- 5. Consider a system with a point charge over a large conducting plane. Please draw the equipotential surfaces and E lines of the system (6%).
- 6. A long wire with a radius r_0 is carrying a constant current I along the z direction. Please draw the H field distribution versus radial distance in any plane perpendicular to the z axis (6%).
- 7. A charge q is placed at the point Q. Please determine the potential at the point P shown in the figure (10%). Note that $\overline{OQ} = \overline{PQ}$.
- 8. A circular polarized wave is incident from medium 1 into medium 2 at the Brewster angle. Please describe the polarization states of both the reflected wave in medium 1 and the transmitted wave in medium 2 (10%).
- A straight-line segment of length L is carrying a current I. A point P is located at a vertical distance d to the line. Please find the magnetic field B at the point P (10%).

10. Consider an electron moving with a constant velocity v along the z direction. At

科目: 電磁學【光電所碩士班】

共工页第乙頁

the same time a long-wavelength EM wave is also propagating at the same direction. Please describe in detail the trajectory of the electron (8%).

- 11. What are the group velocity and phase velocity of an EM wave? Are they the same? Please explain your answer (6%).
- 12. The propagation constant of a transmission line is $\gamma = [(R + j\omega L)(G + j\omega C)]^{0.5}$, where R, L, G, and C are the resistance, inductance, conductance and capacitance per unit length of the line. Please show that when $\frac{L}{R} = \frac{C}{G}$, the line is called distortionless line (6%).
- 13. A rectangular waveguide is shown in the following figure. The operation frequency of the waveguide is 5 GHz for TE_{10} mode. For safety reasons the operation frequency should be 20% larger than the cutoff frequency ($f_c = \frac{c}{2a}$, where c is the speed of light). Please fined the lower and upper bounds of a (10%).

科目: 電子學【光電所碩士班】選考

共 | 頁第 | 頁

- I. Short questions: 30 points (10 points each)
 - (i) What is the Early effect in bipolar junction transistor?
 - (ii) What is Miller effect ?
 - (iii) What is common mode rejection ratio?
- II. Long questions: 70 points
 - (i) Write down the truth table of a digital full adder and design it with basic logic gates. (25 points)
- (ii) Use an OP amplifier to design a N-channel analog signal adder. Write down its transfer function. (25 points)
- (iii) Give reasonable values of R_1 , R_2 , R_E , and R_c to complete the DC bias of the figure below. The power supply is 12 Volts and the emitter current, I_E , is 1 mA. What is the effect of C_E ? (20 points)

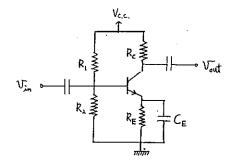


Figure 1

科目:近代物理【光電所碩士班】選考

共 | 頁第 | 頁

- I. Short questions: 40 points (10 points each)
 - (i) A particle with wavefunction, Ψ , travels in the 3-D space. What is the quantum mechanical expectation value of its dynamical quantity, g?
 - (ii) What is the 3-D quantum-mechanical Hamiltonian of one particle?
 - (iii) What is Zeeman effect?
 - (iv) What is Fermi probability distribution?
- H. Long questions: 60 points
 - (i) What is the maximum speed for which the classical expression $\frac{1}{2}mv^2$ will yield an error in the kinetic energy no greater than 1 %? (18 points)
 - (ii) Consider a X-ray beam with λ =0.2 nm and also a γ -ray beam with λ =2 pm. If the radiation scattered from free electrons is viewed at 90 degrees to the incident beam,
 - 1. What is the Compton wavelength shift in each case? (8 points)
 - 2. What kinetic energy is given to a recoiling electron in each case? (8 points)
 - 3. What percentage of the incident photon energy is lost in the collision in each case? (8 points)
 - (iii) Write down the Schroedinger's equation for a simple harmonic oscillator. And explain the procedures to solve it. (18 points)