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1. (16%) Please derive the boundary conditions for static D and H across an interface of two media.

2. (20%) A parallel-plate capacitor of 5 m? area and plate separation of 12 mm is filled with three
dielectric slabs of equal thickness as shown in Fig. 1. If a potential of 120 V is applied to the capacitor,
neglect the fringing and find out: (a) polarization P in each region (10%) and (b) capacitance C of the
capacitor (10%).
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. (20%) For time-harmonic fields, please answer the following questions:
(a) Write down the Maxwell’s equations in phasor form. (12%)

(b) In a simple and nonconducting source-free medium, please derive the homogenous vector
Helmbholtz’s equation for H. (8%)
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. (16%) In free space, a uniform plane wave is expressed as:
E=(a,j3+a,3—a4) ¢ /o7
(a) What is the value of k. 7 (4%)

(b) What is the corresponding H field? (6%)

(c) Please find out the time-average power flow per unit area normal to the direction of propagation.
(6%0)

. (8%) For a transmission line system shown in Fig. 2, please find out the input impedance Ziy.
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. (20%) Consider uniform waveguide structures and answer the following questions:
(a) For a uniform waveguide with arbitrary cross section as shown in Fig. 3(a), please derive the two-
dimensional (2-D) vector phasor expression of transverse magnetic field components in terms of
E’(x,y)and H'(x,y), where E{(x,y)and H'(x,y) are 2-D vector phasors for £. and H.. (10%)

(b) For an air-filled metallic rectangular waveguide with the transverse dimensions @ = 5.0cm and b =
3.0cm as shown in Fig. 3(b), if the operation wavelength is A = 5.0cm, find out the modes which
can appear on this waveguide. (10%)
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1. (a) (10%) Let A be a square matrix of order n and A is normal. w is an arbitrary non-zero 1 X n
column vector, proof that
T 7 ( Ak+1 )
fim - oy~

A; is the largest eigenvalue corresponding to eigenvector u = lim Uy, where
—C0

limu;, = 11m Alw

k—o0 k—co
(b) (10%) Let A, is an eigenvalue of A such that |4, — ;| > |Ap — /'Ll| where 4, is any eigenvalue of A
other than A, and A;. Describe a method to find 4, and its associated eigenvector and prove that method
in details.

2. (a) (10%) Calculate the Fourier transform of the function,
f&) =e
You are supposed to show detailed calculations.
(b) (10%) Solve y from the differential equation under the condition that y(+0) = 0

3. (20%) Three particles of identical mass m are connected by springs and attached to non-moving walls
as shown in Fig. 1. All the springs are identical and have a spring constant k. The forces exerted on
particles obey hooks law. Gravitation is neglected. Find the equation of motion for the three particles|
deviating from their equilibrium positions (x4, X, x3 in Fig. 1), respectively and find the eigenfunctions
and corresponding eigenvalues of the oscillator system.

Fig. 1
4.(a) (10%) Evaluate the integral

oo
[ eiﬂ.’rz dt
—0c0

(b) (10%) Evaluate the Fourier transform of the chirp functions, f(t) = eint®,

5. (20%) Solve coupled differential equations,

dji _ goh

dz ~ 1+4+]J,+/,
%_ —90f2 '
dz 1+],+]/,

subjected to the constraints J; (z) and J,(z) represent positive flow quantity in the domaln z € (0,L), go
is a positive constant. The following boundary conditions are also enforced,

12(0) = RJ1(0)
S (L) = R]z(L)
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