
科目:工程數學【光電所碩士班】

- (1. 務必在<u>試題紙上</u>作答,且務必按試題順序作答。請盡力發揮。)
- (2. 作答務必簡潔, 列出重要演算步驟, 最後答案不需是數字但必需是最簡化的結果。)
- 1. 解下列方程式: $y' + y \tan x = \sin 2x$, y(0) = 1. (10%)
- 2. 解下列方程式: y'' + y = 2t, $y(\frac{1}{4}\pi) = \frac{1}{2}\pi$, $y'(\frac{1}{4}\pi) = 2 \sqrt{2}$. (10%)
- 3. 求 Maclaurin series of $f(z) = \frac{1}{(1-z^3)}$, at $z_0 = 0$. (10%)
- 4. 一個 |z| = 2 的圓形,經 $w = z + \frac{1}{z}$ 映射(mapping) 後,會是何樣圓形? (提示: z = x + iy, w = u + iv). (10%)
- 5. 求 (a) $\nabla f(r)$, (b) $\nabla \cdot (\vec{r} f(r))$, and (c) $\nabla x(\vec{r} f(r))$, (提示: $\vec{r} = x\vec{i} + y\vec{j} + z\vec{k}$). (9%)
- 6. 解下列方程式: $X' = \begin{bmatrix} 4 & 2 \\ 2 & 1 \end{bmatrix} X + \begin{bmatrix} 3e^t \\ e^t \end{bmatrix}$. (9%)
- 7. 求 $\int_0^\infty \frac{dx}{1+x^4} = ?$ (9%)
- 8. 證明 $\cos(\theta) + \cos(\theta + \alpha) + \dots + \cos(\theta + n\alpha) = \frac{\sin\frac{1}{2}(n+1)\alpha}{\sin\frac{1}{2}\alpha}\cos(\theta + \frac{1}{2}n\alpha) \circ (7\%)$
- 9. 敘述你(妳)可想到關於此方程式,z=2+2i,之任何數學觀念和應用。(8%)
- 10. 簡述下列名詞及其重要性所在: (18%)
 - (a) Bessel's Functions
 - (b) Laplace Method
 - (c) Green's Theorem
 - (d) Taylor's Series
 - (e) Cauchy-Riemann Equation
 - (f) Spline interpolation

【光雷所碩士班】

- 1. (10%) Please derive the two divergence equations of Maxwell's equations from the two curl equations of Maxwell's equations by making use of the equation of continuity.
- 2. (12%) A square loop shown in Fig. 1 with side a=0.2 (m) in the xy-plane carries a current I=2 (A) in a uniform magnetic field $\overline{B}=\hat{a}_x5+\hat{a}_y4+\hat{a}_z3$ (T). Find the torque on the loop.

- 3. (12%) A very long cylindrical capacitor shown in Fig. 2 consists of coaxial metallic surfaces of radii a and b. The dielectric material between the surfaces has a relative permittivity $\epsilon_r = 1 + (4/r)$. Please determine the capacitance per unit length of the capacitor.
- 4. (20%) Consider a 100 (Ω) distortionless transmission line. The line has an inductance of 0.25 ($\mu H/m$) and the attenuation on the line is 0.04 (dB/m).
 - (a) Find the resistance, capacitance, and conductance per meter of the line. (12%)
 - (b) Find the distance at which the amplitude of the voltage traveling wave decreases to 1% of its initial value. (8%)
- 5. (20%) A magnetic dipole formed by a small circular loop of radius a carries a current I and centers at the origin as shown in Fig. 3.
 - (a) Find out the vector magnetic potential \overline{A} at a point whose distance, R, from the center of the loop satisfies $R \gg a$. (10%)
 - (b) Find out the magnetic flux density \overline{B} from (a). (10%)

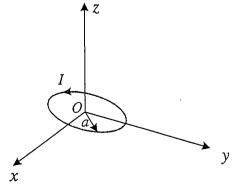
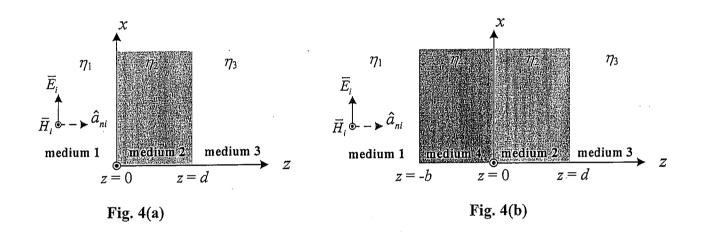



Fig. 3

科目:電磁學【光電所碩士班】

- 6. (26%) Consider the problem of the normal incidence at multiple dielectric interfaces for a uniform plane wave in medium 1.
 - (a) For a situation shown in Fig. 4(a), there is a dielectric discontinuity at z=0, which can be characterized by an infinite medium with an intrinsic impedance Z(0). Please find out Z(0) and the effective reflection coefficient at z=0. (10%)
 - (b) If $\eta_1 \neq \eta_3$ and d is equal to a quarter wavelength in medium 2, please determine η_2 to have no reflection at z = 0. (6%)
 - (c) Sometimes we cannot find a material having a suitable intrinsic impedance to satisfy the condition of no reflection. We can place one more layer with a thickness b in front of medium 2 to reduce the reflection as shown in Fig. 4(b). If b and d are quarter wavelengths in medium 4 and medium 2, respectively, please express the effective reflection coefficient at z=-b. (10%)

科目:電子學【光電所碩士班選考】

(第一部分) 單選題 35%

Figure 1 shows a circuit based on a MOSFET which works as an amplifier. Assume the channel-length modulation cannot be neglected, thus induces an output impedance r_0 ; please choose the correct answer of the following questions.

1. (5%) What is the input impedance (Rin) of the circuit?

(a)
$$R_1$$
 (b) $R_1 + R_S$ (c) $R_1 \parallel R_S$ (d) $R_1 \parallel R_D$ (e) ∞

2. (5%) What is the output impedance (Rout) of the circuit?

(a)
$$R_D$$
 (b) r_O (c) $R_D + r_O$ (d) $R_D \parallel r_O$ (e) $R_D \parallel r_O \parallel R_S$

3. (5%) What is the voltage gain of the circuit?

(a)
$$g_m R_D$$
 (b) $-g_m R_D$ (c) $g_m (R_D \| r_O)$ (d) $-g_m (R_D \| r_O)$ (e) $-g_m (R_D \| r_O \| R_S)$

4. (5%) Which one is unchanged if Cs is removed?

(a) input impedance (b) output impedance (c) voltage gain (d) all of the above

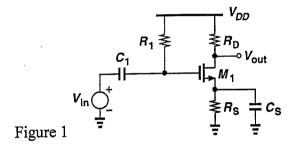
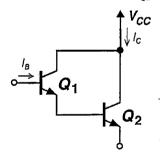



Figure 2 shows a circuit based on two BJT. Assume Early effect can be neglected, and the current gain of the two transistors Q_1 and Q_2 are β_1 and β_2 , respectively.

g_{m1}: transconductance of Q1

 g_{m2} : transconductance of Q2

 $r_{\pi 1}$: small-signal impedance of Q1 seen at the base

 $r_{\pi2}$: small-signal impedance of Q2 seen at the base

Figure 2

5. (5%) If the base of Q_1 is grounded, what is the impedance seen at the emitter of Q_2 ?

(a)
$$r_{\pi 1} + r_{\pi 2}$$
 (b) $r_{\pi 1} \| r_{\pi 2}$ (c) $(r_{\pi 1} \| \frac{1}{g_{m 1}}) + r_{\pi 2}$ (d) $\frac{(r_{\pi 1} \| \frac{1}{g_{m 1}}) + r_{\pi 2}}{\beta_2 + 1}$ (e) $\frac{(r_{\pi 1} \| \frac{1}{g_{m 1}})}{\beta_2 + 1} + r_{\pi 2}$

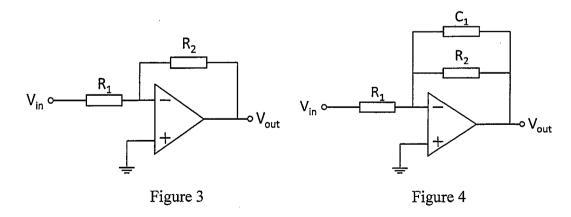
6. (5%) If the emitter of Q_2 is grounded, what is the impedance seen at the base of Q_1 ?

(a)
$$r_{\pi 1} + r_{\pi 2}$$
 (b) $r_{\pi 1} \parallel r_{\pi 2}$ (c) $r_{\pi 1} + (\beta_1 + 1)r_{\pi 2}$ (d) $r_{\pi 1} + (\beta_2 + 1)r_{\pi 2}$ (e) $r_{\pi 1} \parallel (\beta_1 + 1)r_{\pi 2}$

7. (5%) what is the current gain I_C/I_B ?

(a)
$$\beta_1 + \beta_2 (1 + \beta_1)$$
 (b) $\beta_1 (1 + \beta_2)$ (c) $\beta_1 + \beta_2$ (d) $\beta_1 \beta_2$ (e) β_2 / β_1

科目:電子學【光電所碩士班選考】


(第二部分) 簡答題 45%, 題號請標註清楚

- 1. (5%) What are Zener breakdown and avalanche breakdown in pn junction?
- 2. (5%) Please define the drift current and diffusion current of semiconductors.
- 3. (5%) Draw the large-signal and small-signal model of a BJT operating in active region at low frequency.
- 4. (5%) A MOSFET can be viewed as a voltage-dependent resistor in triode region. Please draw the I_D-V_G characteristics and state the operational principles.
- 5. (5%) A MOSFET can be viewed as a voltage-controlled current source in saturation region. Please draw the I_D-V_G characteristics and state the operational principles.
- 6. (5%) Express the small signal transconductance g_m of a MOSFET operating in saturation region in terms of (a) I_D , V_{GS} and V_T and (b) I_D and W/L.
- 7. (5%) Please draw the physical structure of a PMOS and a NMOS including substrate, isolation island and contacts.
- 8. (5%) Please draw the circuit of a simple CMOS inverter and describe the operation principles.
- 9. (5%) What are the basic requirements on input impedance and output impedance for a "good" amplifier? Why?

(第三部分) 計算題 20%, 請寫出計算或推導過程

Figure 3 shows an op amp circuit.

- 1. (5%) Assume the op amp is ideal. Please derive the voltage gain V_{out}/V_{in} of the circuit and draw the equivalent circuit model.
- 2. (5%) If the op amp is not ideal and exhibits a finite open-loop gain A, please derive the voltage gain of the circuit.
- 3. (5%) In Figure 4, consider a capacitor C_1 is in parallel with R_2 , please derive the expression for the transfer function $V_{out}(s)/V_{in}(s)$. Assume the op amp is ideal.
- 4. (5%) What is the dc gain and -3dB bandwidth of the circuit in Figure 4?

科目:近代物理【光電所碩十班選考】

- 1. (20 points) A three-dimensional isotropic harmonic oscillator has the energy eigenvalues $\hbar\omega$ (n + 3/2) where n = 0, 1, 2... What is the degree of degeneracy of the quantum state n?
- 2. (20 points) Use the variation principle to estimate the ground state energy of a particle in the potential

$$V = \infty$$
 for $x < 0$,
 $V = cx$ for $x > 0$.

Take xe^{-ax} as the trial function.

- 3. (30 points) Write expressions relating the wavelength to their energy for following particles. What are the energies for these particles of wavelength = 1 nm, respectively?
 - (a) photons, (10 points)
 - (b) electrons, (10 points)
 - (c) neutrons. (10 points)
- 4. (30 points) For particle statistics, there are three distribution functions: (1) Maxwell-Boltzmann distribution, (2) Bose-Einstein distribution, and (3) Fermi-Dirac distribution.
 - (a) Write down the three distribution functions. (10 points)
 - (b) What are the particle properties of each distribution? (10 points)
 - (c) For each distribution, give an example of the particle. (10 points)

Physical constants:

Reduced Planck constant $\hbar = 1.05458 \times 10^{-34} \text{ J-s}$ Electron volt 1 eV = 1.60218 x 10⁻¹⁹ J Boltzmann constant $k_B = 1.38066 \times 10^{-23} \text{ J/K}$