科目:線性代數【通訊聯招碩士班乙組、電機系碩士班已組、通訊所碩士班甲組】

單選題 (4x5%=20%):

1. Let

$$\mathbf{A} = \left[\begin{array}{cc} 3 & 1-i \\ 1+i & 4 \end{array} \right]$$

which is not true in the following:

- (a) A is an Hermitian matrix
- (b) A is positive definite
- (c) Determinant of A is 10
- (d) Eigenvalues of A are -2 and 5
- (e) Trace of A is 7
- 2. Given singular value decomposition of a matrix $\mathbf{H} \in \mathcal{C}^{m \times n}$ as $\mathbf{H} = \mathbf{U} \Sigma \mathbf{V}^H$, where $\Sigma = \mathrm{diag}(\sigma_1, \cdots, \sigma_r, 0, 0..)$, and $r = \mathrm{rank}(\mathbf{H})$. In the following, which is false:
 - (a) The non-zero eigen-values of $\mathbf{H}\mathbf{H}^H$ are identical to that of $\mathbf{H}^H\mathbf{H}$
 - (b) The non-zero eigen-values of \mathbf{HH}^H are $\sigma_1^2, \cdots, \sigma_r^2$.
 - (c) The eigen-vectors of $\mathbf{H}\mathbf{H}^H$ equals to the columns of \mathbf{V}
 - (d) The singular values $\sigma_1, \cdots, \sigma_r$ are all positive

(e)
$$\sum_{i=1}^{r} \sigma_i^2 = \sum_{i=1}^{M} \sum_{j=1}^{M} |h|_{i,j}^2$$

3. Let $\mathbf{A} = \sum_{i=1}^Q \mathbf{p}_q \mathbf{p}_q^H$, where $\left\{\mathbf{p}_q \in \mathcal{C}^{Q \times 1}\right\}$ is a set of orthonormal vectors. In the

following, which is false:

- (a) A is unitary
- (b) A is symmetric
- (c) p_q is an eigen-vector of A
- (d) All eigen-values of A equal to 1
- (e) Given $\{lpha_i
 eq 0\}$, $lpha_1 \mathbf{p}_1 + lpha_1 \mathbf{p}_2 + \dots + lpha_Q \mathbf{p}_Q$ is an eigenvector of **A**
- 4. Given $m \times m$ matrices **A** and **B**, which statement is not always true in the following.
 - (a) Trace(AB)=Trace(BA)
 - (b) For any $n \times 1$ vectors \mathbf{x} and \mathbf{y} , $\mathbf{x}^H \mathbf{A} \mathbf{y} = \mathbf{x}^H \mathbf{B} \mathbf{y} \Leftrightarrow \mathbf{A} = \mathbf{B}$
 - (c) If **A** is skew-symmetric, then, for any $n \times 1$ vectors **x**, $\mathbf{x}^T \mathbf{A} \mathbf{x} = 0$
 - (d) If **B** is positive definite and $x^H B x = 0$, **x** must be zero.
 - (e) If A is unitary, |det(A)|=1

科目:線性代數【通訊聯招碩士班乙組、電機系碩士班己組、通訊所碩士班甲組】

計算證明題

1. Consider the following matrix

$$A = \begin{bmatrix} 0 & 0 & 0 & 1 \\ 0 & 0 & 1 & 0 \\ 0 & 1 & 0 & 0 \\ 1 & 0 & 0 & 0 \end{bmatrix}$$

- (a) Please explain Cayley-Hamilton theorem and give an example to demonstrate it. (10%)
- (b) $A^{99} = ?(5\%)$
- 2. Consider the following matrix

$$A = \begin{bmatrix} -1 & 0 \\ 1 & -1 \\ 1 & 1 \end{bmatrix}$$

- (a) Please find the eigenvalues and eigenvectors of the matrix AA^{T} , where A^{T} is the transport of A. (5%)
- (b) Please calculate the singular value decomposition (SVD) of A. (5%)
- 3. Please use LU decomposition to solve the following system of linear equation (10%)

$$x_1 - 2x_2 + x_3 - 3x_4 = 20$$

$$-x_1 + x_2 + x_3 + 2x_4 = -8$$

$$-2x_1 + 3x_2 + x_3 + 4x_4 = -21$$

$$3x_1 - 4x_2 - x_3 - 8x_4 = 40$$

- 4. Let A be an $m \times m$ matrix, please derive the necessary and sufficient condition of A being diagonalizable. (15%)
- 5. Let **U** and **V** be two $m \times m$ positive definite matrices.
 - (a) Find a $m \times 1$ complex vector **b**, such that

$$Q = \frac{\mathbf{b}\mathbf{U}\mathbf{b}^H}{\mathbf{b}\mathbf{V}\mathbf{b}^H}$$

is maximized (5%)

(b) What is the maximum value of Q in (a)? (5%)

科目:線性代數【通訊聯招碩士班乙組、電機系碩士班己組、通訊所碩士班甲組】

6. Given the following linear equations:

$$x + 2y = 2$$

$$3x - y = 1$$

$$x - y = -3$$

$$x + 2y = 10$$

- (a) Show that the system described above has no solution. (5%)
- (b) Find the least-square approximate solution of above system. (5%)
- 7. (a) Apply the Gram-Schmidt process to the following vectors to form a set of orthonormal bases. (5%)

$$u_1 = \begin{bmatrix} 1 \\ 0 \\ 1 \\ 0 \end{bmatrix}, \qquad \qquad u_2 = \begin{bmatrix} 0 \\ 0 \\ 1 \\ 1 \end{bmatrix}, \qquad \qquad u_3 = \begin{bmatrix} 0 \\ 1 \\ 1 \\ 1 \end{bmatrix}$$

(b) Find the QR decomposition of (5%)

$$\mathbf{A} = \begin{bmatrix} 1 & 0 & 0 \\ 0 & 0 & 1 \\ 1 & 1 & 1 \\ 0 & 1 & 1 \end{bmatrix}$$

科目:機率【通訊聯招碩士班乙組、電機系碩士班己組、通訊所碩士班甲組】

- 1. (Totally, 20 pts) Let X be a Normal random variable with mean 2 and variance 5.
 - (a) (10 pts) Derive and find the mean and variance of the random variable Y = 6X + 8.
 - (b) (10 pts) Derive and find the mean and variance of the random variable $Y=6X^2$.
- 2. (Totally, 15 pts) Box 1 contains 2000 components of which 10 percent are defective. Box 2 contains 500 components of which 20 percent are defective. Boxes 3 and 4 contain 1000 each with 10 percent defective. We select at random one of the boxes and we remove at random a single component.
 - (a) (8 pts) What is the probability that the selected component is defective?
 - (b) (7 pts) What is the probability that this defective component came from Box 2?
- 3. (Totally, 15 pts) Show that for a random variable X with mean η and variance σ^2 , the following inequality holds for any positive number ε :

$$P\{|X-\eta| \geq \varepsilon\} \leq \frac{\sigma^2}{\varepsilon^2}$$

- 4. (Totally, 15 pts) A firehouse is to be built at some point along a road of length $\,L\,$. A fire is uniformly likely to occur at any point along the road.
 - (a) (8 pts) If we build the firehouse at a point at distance $\,a\,$ from the left endpoint of the road, what is the expected distance the fire truck will have to travel to the fire?
 - (b) (7 pts) Where should the firehouse be located to minimize the expected travel distance to a fire?
- 5. (Totally, 15 pts) Let $p_{\scriptscriptstyle X}$ be a probability function for a discrete probability distribution. Let

 $x_1 < x_2 < x_3 < \cdots$ be all the values for which $p_X(x_i) > 0$. Let $U_1 \sim \text{Uniform}[0,1]$. Define Y by

$$Y = \min \left\{ x_j : \sum_{k=1}^{j} p_X(x_k) \ge U_1 \right\}.$$

Please find the probability function of $\ Y$.

6. (Totally, 20 pts) For a Poisson random variable X with parameter λ , show that (a) (10 pts)

$$P(0 < X < 2\lambda) > \frac{\lambda - 1}{\lambda};$$

(b) (10 pts)

$$E[X(X-1)] = \lambda^2$$
, and $E[X(X-1)(X-2)] = \lambda^3$.

科目:通訊理論【通訊聯招碩士班乙組、電機系碩士班己組、通訊所碩士班甲組】

通訊理論 (Communications Theory)

1. (10 points) Based on the frequency bands, arrange and write the following communication systems in order (from low to high frequencies).

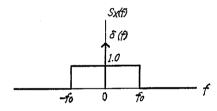
(A) Point-to-point microwave

(B) Standard AM broadcast

(C) Cellular Mobile Radio

(D) Worldwide Submarine Communication

- (E) FM broadcast
- 2. (10 points) Compare full AM with PAM, emphasizing the similarities and differences, particularly on
 - (a) the envelope of the modulated signal
 - (b) carrier
 - (c) spectrum
- 3. (15 points) The power spectral density of a random process X(t) is shown below. It consists of a delta function at f = 0 and a rectangular component.



- (a) (6 points) Determine and sketch the autocorrelation function $R_X(\tau)$ of X(t).
- (b) (3 points) What is the DC power contained in the X(t)?
- (c) (3 points) What is the AC power contained in the X(t)?
- (d) (3 points) If X(t) is sampled, determine the lower bound of sampling frequency so that X(t) is uniquely determined by its samples.
- 4. (15 points) Let a message signal m(t) be transmitted using single-sideband modulation. The power spectral density of m(t) is

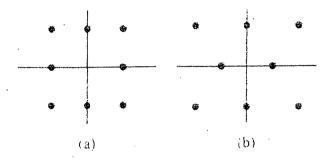
$$S_{M}(f) = \begin{cases} 2\frac{|f|}{W}, & |f| \leq W \\ 0, & otherwise \end{cases}$$

where W is a constant. White Gaussian noise of zero mean and power spectral density $N_0/2$ is added to the SSB modulated wave at the receiver input.

- (a) (6 points) Determine the average signal power.
- (b) (9 points) Assume that a modulated wave is expressed as $s(t) = \frac{1}{2} A_c \cos(2\pi f_c t) m(t) + \frac{1}{2} A_c \sin(2\pi f_c t) \hat{m}(t)$, where $\hat{m}(t)$ is the Hilbert transform of the message signal m(t). Find the output signal-to-noise ratio of the SSB receiver.
- 5. (15 points) Nyquist pulse-shaping criterion (Nyquist condition for zero ISI)
 - (a) (10 points) Show that the necessary and sufficient condition for x(t) to satisfy $x(nT) = \begin{cases} 1 & (n=0) \\ 0 & (n \neq 0) \end{cases}$ is that its Fourier transform X(f) satisfy $\sum_{m=-\infty}^{\infty} X(f+m/T) = T$.
 - (b) (5 points) Suppose that the signal has a bandwidth of W. Determine X(f) for the case of T=1/2W.

科目:通訊理論【通訊聯招碩士班乙組、電機系碩士班己組、通訊所碩士班甲組】

- 6. (10 points) Consider the two 8-point QAM signal constellations shown in the following figure. The minimum distance between adjacent points is 2A.
 - (a) (5 points) Determine the average transmitted power for each constellation, assuming that the signal points are equally probable.
 - (b) (5 points) Which constellation is more power-efficient?



7. (15 points) M-ary PAM signals are represented geometrically as M one-dimensional signal points with value

$$s_m = \sqrt{\frac{1}{2}\varepsilon_g} A_m, \quad m = 1, 2, ..., M$$

where ε_g is the energy of the basic signal pulse g(t). The amplitude values may be expressed as

$$A_m = (2m-1-M)d, m = 1, 2, ..., M$$

where the Euclidean distance between adjacent signal points is $d\sqrt{2\varepsilon_g}$. Assuming equally probable signals:

- (a) (5 points) Find the average energy.
- (b) (5 points) Calculate the average probability of a symbol error.
- (c) (5 points) Find the probability of a symbol error for rectangular *M*-ary QAM. ($M = 2^k$, k is even) Hint: $\sum_{m=1}^{M} m = \frac{M(M+1)}{2}; \quad \sum_{m=1}^{M} m^2 = \frac{M(M+1)(2M+1)}{6}.$
- 8. (10 points) Fourier Transform
 - (a) (5 points) Show that the spectrum of a real-valued signal exhibits conjugate symmetry, i.e., the amplitude spectrum is an even function of f and the phase spectrum is an odd function of f.
 - (b) (5 points) Given $G(f) = \int_{-\infty}^{\infty} g(t) \exp(-j2\pi f t) dt$, i.e., G(f) is the Fourier transform of g(t). Show that $\int_{-\infty}^{\infty} g(\tau) d\tau \rightleftharpoons \frac{1}{j2\pi f} G(f) + \frac{G(0)}{2} \delta(f)$.

科目:工程數學甲【通訊聯招碩士班甲組、電機系碩士班甲組、丙組選考、丁組、戊組、庚組、通訊所碩士班乙組】

1. (10%) Find the solution to the following differential equation:

$$\dot{x}_1(t) = -2x_1(t) + x_2(t)$$
 $x_1(0) = 1$
 $\dot{x}_2(t) = x_1(t) - 2x_2(t)$ $x_2(0) = -1$

2. (15%) Consider a two-dimensional flow governed by the vector field $F(x,y) = (x^2 + y^2)i$, and a domain D enclosed by curves C_1 and C_2 as illustrated in Figure 1. Define the flow into D as positive flow and out of D as negative flow. Calculate the net flow across the boundary of D.

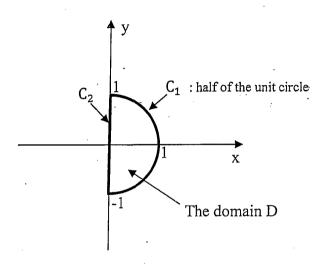


Figure 1: The domain D.

3. (a) (15%) Find the solution to the following wave equation:

$$\frac{\partial^2 \mathbf{w}}{\partial \mathbf{t}^2}(\mathbf{x}, \mathbf{t}) = \frac{\partial^2 \mathbf{w}}{\partial \mathbf{x}^2}(\mathbf{x}, \mathbf{t}) \qquad \forall 0 < x < 1, t > 0$$

$$\mathbf{w}(0, \mathbf{t}) = \mathbf{w}(1, \mathbf{t}) = 0 \qquad \qquad \forall \mathbf{t} > 0$$

$$\mathbf{w}(\mathbf{x}, 0) = 0 \qquad \qquad \forall 0 < x < 1$$

$$\frac{\partial \mathbf{w}}{\partial \mathbf{t}}(\mathbf{x}, 0) = \sin 3\pi \mathbf{x} + \sin 6\pi \mathbf{x} \qquad \forall 0 < x < 1$$

- (b) (5%) Besides the boundary points x=0 and x=1, what are the stationary points of the solution to the above wave equation; i.e., at what x's w(x,t) is equal to zero for all t>0?
- 4. (15%) Let \mathbf{x} and \mathbf{y} be two vectors in the vector space V and let S be a set of vectors in V. Denote by $LC(\mathbf{x},S)$ the set of all linear combinations of \mathbf{x} and any vector \mathbf{s} in S, i.e.,

$$LC(\mathbf{x},S) := \{ \mathbf{v} = \alpha \mathbf{x} + \beta \mathbf{s} \mid \alpha, \beta \in \mathbb{R} \text{ and } \mathbf{s} \in S \}.$$

- (a) Show that if $LC(\mathbf{x},S) \subset LC(\mathbf{y},S)$, then $\mathbf{x} \in LC(\mathbf{y},S)$. (5%)
- (b) Under what condition on set S will the implication " $\mathbf{x} \in LC(\mathbf{y},S) \implies LC(\mathbf{x},S) \subset LC(\mathbf{y},S)$ " hold? Give the condition and show your answer. (10%)
- 5. (10%) Let M and N be two subspaces of \mathbb{R}^n such that $\mathbb{R}^n = M \oplus N$ and let P be the projection matrix that projects vectors of \mathbb{R}^n onto M along N.
 - (a) Show that P is an idempotent matrix, i.e. $P^2 = P$. (5%)
 - (b) Let λ be an eigenvalue of matrix P. Find all possible values of λ . (5%)

科目:工程數學甲【通訊聯招碩士班甲組、電機系碩士班甲組、丙組選考、丁組、戊組、庚組、通訊所碩士班乙組】

6. (15%) Evaluate the following integral

$$\oint_C z^{n-1} e^{1/z} dz$$

where z is a complex variable, and C is the circle |z|=1 in counterclockwise direction.

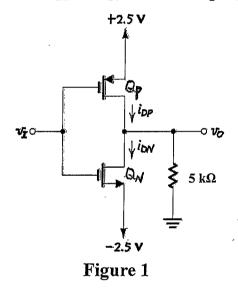
Hint: Find the Laurent series representation of $e^{1/z}$ first.

7. (15%) Let $F(\omega)$ and $G(\omega)$ be the Fourier transforms of two continuous signals f(t) and g(t) respectively. Prove that

$$\mathcal{F}(f(t)g(t)) = \frac{1}{2\pi}F(\omega)*G(\omega),$$

where Fstands for Fourier transform, and "*" is the convolution operator.

- 1. (15%) Calculate the built-in voltage of a junction in which the p and n regions are doped with 10^{15} atoms/cm³ and 10^{16} atoms/cm³, respectively. Assume $n_i \approx 10^{10}$ /cm³. With no external voltage applied, (i) (6%) what is the width of the depletion region, and (ii) (3%) how far does it extend into the p and n regions? If the cross-sectional area of the junction is $100 \, \mu \text{m}^2$, (iii) (3%) find the magnitude of the charge stored on either side of the junction, and (iv) (3%) calculate the junction capacitance C_j .
- 2. (15%) The NMOS and PMOS transistors in the circuit of Figure 1 are matched with $k'_n(W_n/L_n) = k'_p(W_p/L_p) = 1 \text{ mA/V}^2$ and $V_{tn} = -V_{tp} = 0.7 \text{ V}$. (where k' is the process transconductance parameter, W/L is the ratio of the channel width to the channel length, V_t is the threshold voltage). Assuming process-technology parameter $\lambda = 0$ for both devices (neglect the effect of channel-length modulation), find the drain currents i_{DN} and i_{DP} and the voltage v_O for $v_I = 0 \text{ V}$, +2.5 V, and -2.5 V.



3. (20%) To analyze the circuit in Figure 2, (i) (15%) to determine the voltages at all nodes (A, B, C, D, and E) and the currents through all branches (I_{B1}, I_{C1}, I_{E1}, I_{B2}, I_{C2} and I_{E2}), (ii) (5%) find the total current drawn from the power supply. Hence find the power dissipated in the circuit.

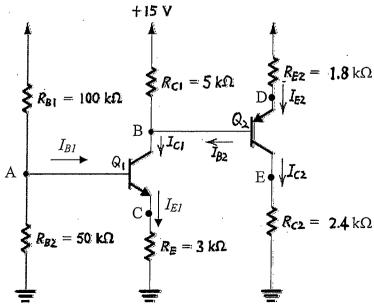


Figure 2

科目:電子學【通訊聯招碩士班甲組、電機系碩士班甲組、乙組、戊組、通訊所碩士班乙組】

4. (15%) To analyze the instrumentation amplifier circuit shown in Figure 3, (i) (5%) to determine v_o as a function of v_I and v_2 , (ii) (5%) to determine the differential gain $[v_o/(v_2, v_I)]$ and (iii) (5%) to find the input resistance.

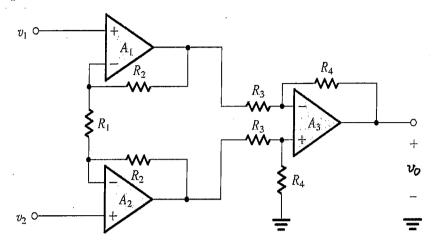


Figure 3

5. (20%) The differential amplifier in Figure 4 uses transistors with $\beta = 100$. Evaluate the following: (i) (5%) The input differential resistance R_{id} . (ii) (5%) The overall differential voltage gain v_0/v_{sig} (neglect the effect of r_0). (iii) (5%) The worst-case common-mode gain if the two collector resistances are accurate to within $\pm 1\%$. (iv) (5%) The common-mode rejection ration (CMRR), in dB.

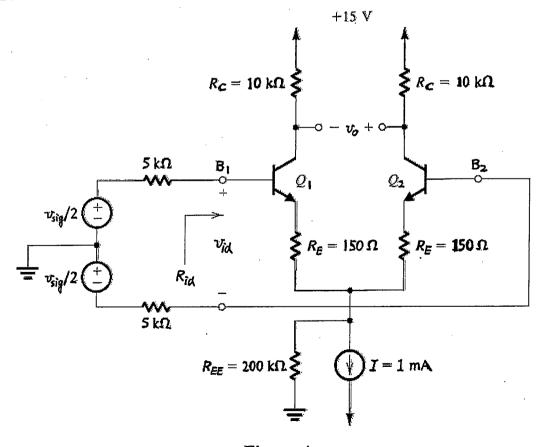


Figure 4

- 6. (15%) (i) (9%) Sketch a CMOS logic circuit that realize the function: Y = A + B(C+D)
 - (ii) (6%) Sketch a CMOS logic circuit that realize the function: Y = ABC+ABC

科目:電磁學【通訊聯招碩士班甲組、電機系碩士班戊組、通訊所碩士班乙組】

- 1. A spherical conducting shell of radius a, centered at the origin, is maintained at a potential V_0 (zero potential at infinity) in air. Denote $r = \sqrt{x^2 + y^2 + z^2}$
 - (a) Determine potential function V(r) for r < a and r > a. (10%)
 - (b) Determine the electric field intensity **E** for r < a and r > a. (10%)
 - (c) Find the energy stored in the electric field. (5%)
- 2. A very long, straight wire is along the z-axis. The tips of a triangular loop are located at (d, 0, 0), (d+b, 0, 0), and (d, 0, d+b). Find the mutual inductance between the straight wire and the loop. (15%)
- 3. The three regions shown in Fig.P3 contain perfect dielectrics. For a wave in medium 1 incident normally upon the boundary at z = -d, what combination of ε_{r2} and d produces no reflection? Express the answer in terms of ε_{r1} , ε_{r3} and f of the wave. (20%)

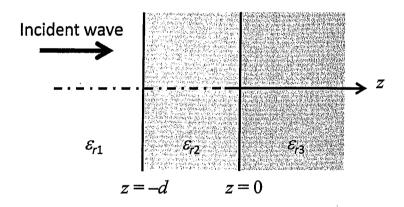


Fig.P3

4. Fig.P4 shows an open-circuited transmission line connected to a source with internal resistance of 50Ω and source voltage

$$V_g(t) = V_0 \cos(3f_0 t) \cos(f_0 t)$$

with $\ell = \lambda/4$ at $f = f_0$. Find the root-mean-square (rms) values of the line voltage and current at z = 0, $z = -\ell/2$ and $z = \ell$. (20%)

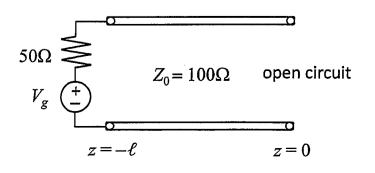


Fig.P4

科目:電磁學【通訊聯招碩士班甲組、電機系碩士班戊組、通訊所碩士班乙組】

- 5. A rectangular air-filled waveguide has a cross-section of 45×90 mm. Find
 - (a) cutoff wavelength λ_c for the dominant mode,
 - (b) relative phase velocity u_p/c in the guide at a frequency of $1.6 f_c$,
 - (c) cutoff wavelength if the guide is filled with a dielectric of $\varepsilon_r = 1.7$, and
 - (d) relative phase velocity u_p/c with the dielectric at 1.6 f_c .

(20%)