科目:工程數學【通訊所碩士班甲組】

共 | 頁第 | 頁

1) (Totally, 15pts) Suppose that the random variable X has a Poisson distribution with parameter $\lambda > 0$

(a) (5 pts) Find the moment generating function of X.

(b) (5 pts) Show that $E(X) = \lambda$ and $Var(X) = \lambda$.

(c) (5 pts) Show that

$$P(X = 0) \le P(X = 1) \le \ldots \le P(X = \lfloor \lambda \rfloor)$$

and

$$P(X = \lfloor \lambda \rfloor) \ge P(X = \lfloor \lambda \rfloor + 1) \ge P(X = \lfloor \lambda \rfloor + 2) \ge \dots,$$

where |y| is a floor function that returns the largest integer less than or equal to y.

2) (Totally, 20pts) Let $F_X(x)$ and $F_Y(y)$ be the distribution functions of X and Y, respectively, and let F(x,y) be the joint distribution function of X and Y. Additionally, let $Z = \max(X,Y)$, $W = \min(X,Y)$.

(a) (5 pts) Show that the distribution function of Z is F(z,z) and the distribution function of W is $F_X(w) + F_Y(w) - F(w,w)$.

(b) (5 pts) If F(x, y) is continuous, find the densities of Z and W.

(c) (10 pts) If X and Y are independent Gaussian random variables with N(0,1), show that

$$E\left(\max(X,Y)\right) = \frac{1}{\sqrt{\pi}}.$$

3) (Totally, 15pts) X is called a lognormal variable, if the $\log X = Y$ has a normal distribution $N(\mu, \sigma^2)$.

(a) (5 pts) Find the density of X.

(b) (5 pts) Find E(X) and Var(X).

(c) (5 pts) Show that if the X_i are independent lognormal random variables, their product X_1, X_2, \ldots, X_n is also lognormal.

4) (Totally, 10pts) Let $X_n = \sum_{i=1}^n a \cos \theta_i$ and $Y_n = \sum_{i=1}^n a \sin \theta_i$, where θ_i are independently uniform in $(0, 2\pi)$.

(a) (5 pts) Show that the X_n and Y_n are uncorrelated but not independent.

(b) (5 pts) Find the distribution of (X_n, Y_n) for large $n(n \to \infty)$.

5) (Totally, 20pts) Let V be a finite-dimensional inner product space, $T:V\to V$ be a projection, and $\|\cdot\|$ be the norm on V.

(a) (10 pts) If T is an orthogonal projection, prove that $||T(x)|| \le ||x||$ for all $x \in V$. If equality holds, what can be concluded about T.

(b) (10 pts) If T is also normal and V is complex, prove that T must be an orthogonal projection.

6) (Totally, 20pts) Let A be an $n \times n$ matrix with characteristic polynomial

$$f(t) = (-1)^n t^n + a_{n-1} t^{n-1} + \dots + a_1 t + a_0.$$

(a) (10 pts) Prove that A is invertible if and only if $a_0 \neq 0$.

(b) (5 pts) Prove that if A is invertible, then

$$A^{-1} = \frac{-1}{a_0} \left[(-1)^n A^{n-1} + a_{n-1} A^{n-2} + \dots + a_1 I_n \right].$$

(c) (5 pts) Use part (b) to compute A^{-1} for

$$\mathbf{A} = \left[\begin{array}{ccc} 1 & 2 & 1 \\ 0 & 2 & 3 \\ 0 & 0 & -1 \end{array} \right]$$

- 1. (10%) If x(t) is a Gaussian pulse, show that the Fourier transform X(t) is also a Gaussian pulse.
- (20%) x(t) is a random signal with autocorrelation function R_{xx}(τ) and power spectrum S_{xx}(f). The random signal is applied to a filter with frequency response H(f) and impulse response h(t). (a) Derive the autocorrelation R_{yy}(τ) of the filter's output.
- (20%) Find the minimum required bandwidth and bit error rate for a noncoherently detected orthogonal binary FSK system with symbol duration T second.
- 4. (15%) Consider a carrier signal s at a frequency ω_0 and with an amplitude a, $s = a \cdot \exp(j\omega_0 t)$. The received signal s_r is the sum of n waves:

$$S_r = \sum_{i=1}^n a_i \exp[j(\omega_0 t + \theta_i)] \equiv r \exp[j(\omega_0 t + \theta)], \text{ where } r \exp(j\theta) = \sum_{i=1}^n a_i \exp(j\theta_i).$$

Define:

$$r\exp(j\theta) = \sum_{i=1}^{n} a_i \cos \theta_i + j \sum_{i=1}^{n} a_i \sin \theta_i \equiv x + jy$$

We have:

$$x \equiv \sum_{i=1}^{n} a_i \cos \theta_i$$
 and $y \equiv \sum_{i=1}^{n} a_i \sin \theta_i$

where:

$$r^2 = x^2 + y^2 \quad x = r\cos\theta \quad y = r\sin\theta$$

Assume (1) n is very large, (2) the individual amplitude a_i are random, and (3) the phase θ_i have a uniform distribution, it can be assumed that (from the central limit theorem) x and y are both Gaussian variables with means equal to zero and variance: $\sigma_x^2 = \sigma_y^2 \equiv \sigma^2$

- A. [10] Prove that the PDF of r is given by $p_R(r) = \begin{cases} \frac{r}{\sigma^2} e^{-r^2/2\sigma^2} & r \ge 0\\ 0 & \text{otherwise} \end{cases}$
- B. [5] Find the mean square value of r: $E[r^2]$.
- 5. (20%) Prove that if a signal s(t) is corrupted by AWGN, the filter with an impulse response matched to s(t) maximizes the output signal-to-noise ratio. The maximum SNR obtained with the matched filter is

$$SNR_0 = \frac{2}{N_0} \int_0^T s^2(t) dt = \frac{2\varepsilon}{N_0}$$

- 6. (15%) The Hilbert transform is given by $\hat{x}(t) = \frac{1}{\pi} \int_{-\infty}^{\infty} \frac{x(\tau)}{t-\tau} d\tau$. Prove the following properties:
 - A. [5] If x(t) = x(-t), then $\hat{x}(t) = -\hat{x}(-t)$.
 - B. [10] If $x(t) = \cos \omega_0 t$, then $\hat{x}(t) = \sin \omega_0 t$.

科目:微分方程及向量分析【通訊所碩士班乙組】

共/頁第/頁

1. A surface is given by

$$x^2 + y^2 + z^2 = 3$$
.

(10%) (a) Find a unit vector perpendicular to the surface at the point (1,1,1).

(10%) (b) Derive the equation of the plane tangent to the surface at the point (1,1,1).

2. A vector is given by

$$\vec{F} = (x^2 + y^2 + z^2)^n (\vec{a}_x x + \vec{a}_y y + \vec{a}_z z) \; .$$

(10%) (a) Find $\nabla \cdot \vec{F}$ and $\nabla \times \vec{F}$, respectively.

(10%) (b) Find a scalar potential $\varphi(x, y, z)$ such that $\vec{F} = -\nabla \varphi$ for the condition of n = -1 and $n \neq -1$, respectively.

3. Find a general solution for X(x) in the following ordinary differential equations:

(10%) (a)
$$\frac{d^2 X(x)}{dx^2} + X(x) = 6\cos x + 2$$

(10%) (b)
$$x \frac{dX(x)}{dx} + X(x) = \frac{1}{x}$$
, for $x > 0$

4. Solve the following initial-value problems using the Laplace transform.

(10%) (a) $\frac{\mathrm{d}f(t)}{\mathrm{d}t} - f(t) = H(t-1)$, where f(0) = 0. Note that H(t) is a unit step function.

(10%) (b)
$$\frac{d^2 f(t)}{dt^2} + \frac{df(t)}{dt} = 1 + \delta(t-2)$$
, where $f(0) = 0$ and $\frac{df(t)}{dt} = 3$ at $t = 0$. Note that $\delta(t)$ is a unit impulse function.

5. Two-dimensional Laplace's equation for scalar electric potential V in polar coordinates is given by

$$\nabla^2 V(r,\phi) = 0.$$

(10%) (a) Derive a general solution for $V(r,\phi)$ which has ϕ -dependence and vanishes as $r\to\infty$.

(10%) (b) Determine $V(r, \phi)$ by assuming no ϕ -dependence and specifying the boundary conditions, $V = V_0$ at r = a and V = 0 at r = b, for $a \le r \le b$.

科目:電磁學【通訊所碩士班乙組】

共2頁第 1頁

1. A surface charge is distributed uniformly with density ρ_{s0} on a rectangular surface of sides a and b. Find the electric potential at the center of the rectangular surface.

(15%)

2. A large conducting plate of thickness d is located at $-d/2 \le y \le d/2$, as shown in Fig. P2. A uniform current density $\mathbf{J} = \mathbf{a}_z J_0$ is flowing in the z-direction. Find the magnetic field in all regions. (15%)

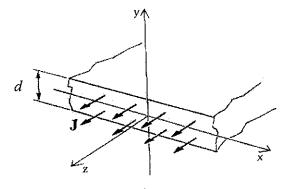


Fig. P2

3. The electric field component of an electromagnetic wave in free space is given by

$$\mathbf{E}(y,z,t) = \hat{\mathbf{a}}_{z} E_{0} \cos(ay) \cos(\omega t - bz).$$

- (a) Find the corresponding magnetic field H(y, z, t). (5%)
- (b) Find the relationship between a, b and ω such that all of Maxwell's equations are satisfied. < 5 %
- (c) This wave can be regarded as the sum of two uniform plane waves. Determine the direction of propagation of these two component waves. (5%)
- 4. A 500 MHz uniform plane wave is normally incident on a freshwater ($\varepsilon_r = 88$) lake covered with a layer of ice ($\varepsilon_r = 3.2$), as shown in Fig. P.4.
 - (a) Find the minimum thickness of the ice such that the reflected wave has a maximum strength. Assume the lake water to be very deep. (5 %)
 - (b) What is the ratio of the amplitude of the reflected and incident electric fields? (5%)

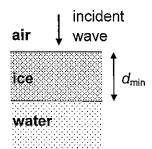


Fig. P4.

科目:電磁學【通訊所碩士班乙組】

共2頁第2頁

5. A 150- Ω transmission line is connected to two loads as shown in Fig. P.5. Find l_1 , l_2 , R_1 and R_2 such that the loads receive equal powers with in-phase voltages. (20%)

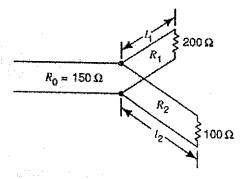


Fig. P5.

- 6. This problem describes the procedure to find the TM modes inside a metallic rectangular waveguide of dimensions $a \times b$, with a > b.
 - (a) First, write down the time-harmonic Maxwell's equations. (5%)
 - (b) Derive the equations expressing the transverse components of electric and magnetic fields in terms of the longitudinal components. (10%)
 - (c) Solve the longitudinal component from the Helmholtz equation and related boundary conditions, and then the rest of the field components from the longitudinal component. (10%)