1. For the circuit shown in Fig. 1, find  $I_E$  and  $V_{CE}$  for  $V_{BE} = 0.7$  V and (a)  $\beta = \infty$  (b)  $\beta = 10$ . (20%)



Figure 1

2. Consider the CMOS common-gate amplifier as shown in Fig. 2, using transistors for which  $|V_i|$  = 1 V,  $\mu_n C_{ox} = 2\mu_p C_{ox} = 20 \,\mu\text{A/V}^2$ ,  $|V_A| = 50 \,\text{V}$ ,  $L = 10 \,\mu\text{m}$ ,  $W_n = W_p = 100 \,\mu\text{m}$  and  $I_{REF} = 50 \,\mu\text{A}$ . For the input signal source having an average voltage of 0 V, what must  $V_{BLAS}$  be? For  $\chi$  found to be 0.2, what are the values of the voltage gain  $v_c/v_i$  and the input resistance  $R_i$ ? (20%)



Figure 2

3. Sketch the circuit of a NAND SR flip-flop using CMOS, and prepare a truth table whose entries are in terms of stable output voltages available with a 3 V supply and devices for which  $|V_t| < 3/2$  V. (20%)

- Design an op-amp circuit with a gain of -2 V/V using three 100 kΩ resistors. How many solutions are there? Sketch all the solutions. What is the input resistance of each? (20%)
- 5. A manufacturing-process deviation in the production of TTL gates using the circuit of Fig. 3, reduces current gain such that  $\beta_F = 9$  and  $\beta_R = 0.05$ . For input high, estimate  $I_{E2}$  for  $V_{BE} = 0.7$  V and a load of 1 k $\Omega$  connected to the 5 V supply. What is the largest possible famout (excluding the 1 k $\Omega$  load), for which saturation of  $Q_3$  is still possible? (20%)



Figure 3

## 國立中山大學九十三學年度碩士班招生考試試題

科目: 工程數學(含線性代數及機率)(通訊工程研究所碩士班甲組)

共/頁第/頁

#### Problem 1. (Totally, 20 points)

Let V and W be two finite-dimensional vector spaces. Let  $T:V\to W$  be a linear mapping from V to W.

(1) (5 points) What is a basis for a vector space?

(2) (5 points) What are the definitions of eigenvalues of eigenvectors of T?

(3) (10 points) Prove that the matrix equation Tx = y has a solution if and only if rank(T|y) = rank(T).

### Problem 2. (Totally, 30 points)

Let V be a finite-dimensional inner product space over F, and let T be a linear operator on V. Denote the inner product of x and y by  $\langle x, y \rangle$ ,  $\forall x, y \in V$ . Denote the adjoint of T by  $T^*$ . Namely,  $\langle T(x), y \rangle = \langle x, T^*(y) \rangle$ ,  $\forall x, y \in V$ . Suppose  $TT^* = T^*T$ . Denote the norm of x by ||x||,  $\forall x \in V$ .

(1) (5 points) Prove that  $||T(x)|| = ||T^*(x)||, \forall x \in V$ .

(2) (5 points) Prove that if  $\lambda_1$  and  $\lambda_2$  are distinct eigenvalues of T with corresponding eigenvectors  $x_1$  and  $x_2$ , then  $x_1$  and  $x_2$  are orthogonal.

(3) (10 points) Suppose  $T = T^*$ . Prove that every eigenvalue of T is real.

(4) (10 points) Let  $g: V \to F$  be a linear transformation. Prove that there exists a unique vector  $y \in V$  such that  $g(x) = \langle x, y \rangle$  for all  $x \in V$ .

#### Problem 3. (Totally, 20 points)

(1) (10 points) Let n be a natural number and  $p \in (0,1)$ . Let X be a binomial random variable such that  $P(X=i) = C_i^n p^i (1-p)^{n-i}, \forall i \in \{0,1,2,..,n\}$ . Calculate the mean of X.

(2) (10 points) The moment generating function  $\phi(t)$  of the random variable X is defined for all values t by  $\phi(t) = E[e^{tX}]$ . Calculate the moment generating function for an exponentially distributed random variable with mean  $\lambda$ .

#### Problem 4. (Totally 30 points)

Let  $U_1, U_2, U_3, ...$  be a sequence of independent uniform (0, 1) random variables. Namely,  $\forall n \geq 1, U_n$  is a continuous random variable and is uniformly distributed between zero and one. Define

$$N = \min\{n : n \ge 2, U_n > U_{n-1}\}$$
 (1)

In other words, N is the index of the first uniform random variable that is larger than its immediate predecessor.

Define

$$M = \min\{n : n \ge 1, U_1 + U_2 + ... + U_n > 1\}$$
 (2)

Namely, M is the number of uniform random variables whose sum we need to exceed one.

(1) (10 points) Derive the probability density function of N. (Hints: Consider the total number of ordering of  $U_1, U_2, ..., U_n$ .)

(2) (5 points) Calculate the expected value of N.

(3) (15 points) Prove that the probability density function of M is identical to the probability density function of N. (Hints: Let  $M(x) = \min\{n : n \ge 1, U_1 + U_2 + ... + U_n > x\}$ . Show that  $P\{M(x) > n\} = \frac{x^n}{n!}$  by conditioning on  $U_1$ .)

- 1. [20] Fourier Transform
  - A. [5] Find the Fourier transform of the single-sided exponential pulse  $e^{-at}u(t)$  where a>0 and u(t) is a unit step function.
  - B. [5] Find the Fourier transform of a two-sided exponential pulse defined by:  $e^{-a|x|}$  where a>0.
  - C. [5] Find the Fourier transform of a time-shifted version of two-sided exponential pulse defined by:  $e^{-a|t-t_0|}$  where a>0.
  - D. [5] Find the Fourier transform of a unit step function u(t).
- 2. [20] Phase-Shift Keying
  - A. [10] In a coherent binary PSK system, the pair of signals  $s_1(t)$  and  $s_2(t)$  used to represent binary symbols 1 and 0, respectively, is defined by:

$$s_1(t) = \sqrt{E_b}\phi_1$$
 and  $s_2(t) = -\sqrt{E_b}\phi_1$ 

where  $E_b$  is the transmitted signal energy per bit. If the signal is corrupted by an additive white Gaussian noise (AWGN) with zero mean and variance of  $N_0/2$ , find the corresponding bit error rate in terms of Q-function, which is defined by:

$$Q(a) = \frac{1}{\sqrt{2\pi}} \int_{a}^{\infty} e^{-x^2/2} dx.$$

- B. [5] Find the bit error rate of a QPSK system.
- C. [5] Find the symbol error rate of a QPSK system.
- 3. [20] Matched Filter

Prove that if a signal s(t) is corrupted by AWGN, the filter with an impulse response matched to s(t) maximizes the output signal-to-noise ratio. The maximum SNR obtained with the matched filter is:

$$SNR_0 = \frac{2}{N_0} \int_0^t s^2(t) dt = \frac{2\varepsilon}{N_0}$$

- 4. [20] Decision Rules
  - A. [10] Describe the "maximum a posteriori decision rule" and "maximum likelihood decision rule".
  - B. [10] If a binary information sequence u=(u<sub>1</sub>, u<sub>2</sub>, ..., u<sub>n</sub>) is transmitted through an AWGN channel, prove that the maximum likelihood decision leads to finding the sequence with minimum Euclidean distance.
- 5. [20] Explanations:
  - A. [5] What is a wide sense stationary (WSS) process?
  - B. [5] What is an ergodic process?
  - C. [5] What is a cyclostationary process?
  - D. [5] Describe the OQPSK modulation scheme.

# 國立中山大學九十三學年度碩士班招生考試試題

科目: 微分为程及向量分析 (通訊所) (乙與)

共 2 頁 第 1 頁

Fill in the <u>underlined</u> blanks. Write you answers in the answer sheet. The detailed derivation is **NOT** required. (填空題,將答案寫在答案卷上,不須推導)

In the following  $\vec{r} = \vec{a}_x x + \vec{a}_y y + \vec{a}_z z$  is the position vector,  $r = |\vec{r}|$ , and  $\vec{a}_\alpha$  denotes the unit vector in the corresponding  $\alpha$  direction.

- 1. (20pts) Consider a 2-D scalar field  $V(x, y) = \frac{1}{(x-1)^2 + 1} + \frac{1}{(y-1)^2 + 1}$ . The greatest directional derivative of V at the **origin** is \_\_\_(1) and in the direction \_\_(2) (specified using a unit vector). At what points does this greatest directional derivative reach maximum? Answer \_\_\_(3) \_\_. The positive maximum value is \_\_\_(4) \_\_.
- 2. (10pts) Let  $\vec{A}(x, y, z) = \vec{a}_x xy \vec{a}_y z^2 + \vec{a}_z x^2$ , V(x, y, z) = xyz, and C is the curve  $x = t^2$ , y = 2t,  $z = t^3$ , evaluate the line integrals from t = 0 to t = 1  $\int_C \vec{A} \times d\vec{r} = \underline{\qquad (5)}$  and  $\int_C V(x, y, z) d\vec{r} = \underline{\qquad (6)}$ .
- 3. (20pts) Let field  $\vec{A} = \vec{a}_r r^5$  exist in a ball of radius 1.
  - (a) The divergence  $\nabla \cdot \vec{\Lambda}$  in Cartesian coordinates is \_\_\_\_\_(7)\_\_.
  - (b) The volume integral  $\int \nabla \cdot \vec{A} dv$  over the unit-radius ball is \_\_\_\_(8)\_\_\_.
  - (c) The surface integral  $\int \vec{A} \cdot d\vec{s}$  over the surface of the top-half hemisphere of the unit-radius ball is \_\_\_(9)\_\_\_.
  - (d) The surface integral  $\int \vec{A} \cdot d\vec{s}$  over the xy-plane, with  $d\vec{s}$  in the positive z direction, is \_\_\_(10)\_\_\_.
- 4. (20pts) We wish to solve the differential equation  $y'' 2y' + y = e^x / x^3$ , x > 0.
  - (a) Find the homogeneous solution  $y_h(x) = (11)$
  - (b) Find a particular solution  $y_p(x) = \underline{(12)}$ .
  - (c) Given the initial conditions y(1) = 0, y'(1) = 0, we can find the complete solution y(x). Find  $y(\ln 2) = (13)$  and y(2) = (14).

# 國立中山大學九十三學年度碩士班招生考試試題

科目: 微分为程及向量分析 (通风所) (乙) 劉)

共 2 頁 第 2 頁

- 5. (15pts) The differential equation and initial conditions are given by y'' 3y' + 4y = 0, and y(0) = 1, y'(0) = 5
  - (a) Find the Laplace transform Y(s) of y(x). Y(s) = (15).
  - (b) Use the inverse Laplace transform to solve for y(x). Write the solution as  $y(x) = e^{ax} A \cos(\omega x \phi)$ , where A > 0. Then a = (16) and A = (17)

(15 Pts)

- 6. Consider the Sturm-Liouville problem  $y'' + \lambda y = 0$ ; y(0) = 0,  $y'(\pi) = 0$ . Suppose the eigenvalues and the corresponding eigenfunctions are respectively  $\lambda_n$  and  $y_n$ ,  $n = 1, 2, \dots$ , where  $0 < \lambda_1 < \lambda_2 < \dots$ . Find
  - (a)  $\lambda_1 = (18)$ , (b)  $\lambda_2 = (19)$ , (c)  $y_4(\pi)/y_4(\pi/2) = (20)$ .

### Electromagnetics May 2, 2004

- Find the input impedance of a low-loss quarter-wavelength line (20%)
  - a. Terminated in a short circuit.
  - b. Terminated in an open circuit.
- 2. Consider two point charges of Q1 =  $+1\mu$ C and Q2 =  $+2\mu$ C located respectively at (1, 0)m and (-1, 0)m. (20%)
  - a. What is the magnitude and direction of the electrical force felt by a third charge Q3 = +1nC when placed at (0, 1)m?
  - b. At what point(s) must the third charge Q3 = +1nC be placed in order to experience no net force?
- 3. Two circular coils with centers on a common axis have N1 and N2 turns, each of which is closely wounded, and radii a and b, respectively. The two coils are separated by a distance d, which is assumed to be much larger than both radii (i.e., d >> a, b). Please find the mutual inductance between the coils. (20%)
- 4. Consider a certain type of humid soil with the following properties:  $\sigma \approx 10^{-2} \, \text{S-m}^{-1}$ ,  $\varepsilon_r = 30$ ,  $\mu_r = 1$ . Find the ratio of the amplitudes of the conduction and displacement currents at 1 kHz, 1 MHz, and 1GHz. (20%)
- 5. An air-filled parallel-plate waveguide has a plate separation of 1.25cm. Find (a) the cutoff frequencies of the TM<sub>0</sub>, TE<sub>1</sub>, TM<sub>1</sub>, TM<sub>2</sub>. (b) The phase velocities of those modes at 15GHz. (20%)