科目名稱:線性代數【通訊所碩士班甲組】

一作答注意事項一

- 考試開始鈴響前不得翻閱試題,並不得書寫、劃記、作答。請先檢查答案卷(卡)之應考證號碼、桌角號碼、應試科目是否正確,如有不同立即請監試人員處理。
- 答案卷限用藍、黑色筆(含鉛筆)書寫、繪圖或標示,可攜帶橡皮擦、無色透明無文字墊板、尺規、修正液(帶)、手錶(未附計算器者)。每人每節限使用一份答案卷,請衡酌作答。
- 答案卡請以2B鉛筆劃記,不可使用修正液(帶)塗改,未使用2B鉛 筆、劃記太輕或污損致光學閱讀機無法辨識答案者,後果由考生自負。
- 答案卷(卡)應保持清潔完整,不得折疊、破壞或塗改應考證號碼及條碼,亦不得書寫考生姓名、應考證號碼或與答案無關之任何文字或符號。
- 可否使用計算機請依試題資訊內標註為準,如「可以」使用,廠牌、功能不拘,唯不得攜帶書籍、紙張(應考證不得做計算紙書寫)、具有通訊、記憶、傳輸或收發等功能之相關電子產品或其他有礙試場安寧、考試公平之各類器材入場。
- 試題及答案卷(卡)請務必繳回,未繳回者該科成績以零分計算。
- 試題採雙面列印,考生應注意試題頁數確實作答。
- 違規者依本校招生考試試場規則及違規處理辦法處理。

科目名稱:線性代數 【通訊所碩士班甲組】

題號: 437006

※本科目依簡章規定「可以」使用計算機(廠牌、功能不拘)(混合題)

共3頁第1頁

一、單選題 (每題5分)

- 1. (5%) Which of the following statement is **False**?
 - (A) If B is obtained from a matrix A by several elementary row operations, then rank(B) = rank(A).
 - (B) Row operations on a matrix A can change the linear dependence relations among the rows of A.
 - (C) A change-of-coordinates matrix is always invertible.
 - (D) If A is $m \times n$ and rank A = m, then the linear transform $x \mapsto Ax$ is one-to-one.
 - (E) If A is $m \times n$ and linear transformation $x \mapsto Ax$ is onto, then rank A = m.
- 2. (5%) Which of the following statement is **False**?
 - (A) If an augmented matrix $[A \ b]$ is transformed into $[C \ d]$ by elementary row operations, then the equations Ax = b and Cx = d have exactly the same solution sets.
 - (B) If a system Ax = b has more than one solution, then so does the system Ax = 0.
 - (C) If matrices A and B are row equivalent, they have the same reduced echelon form.
 - (D) If A is an $m \times n$ matrix and the equation Ax = b is consist for every b in \mathbb{R}^m , then A has m pivot column.
 - (E) If A is an $m \times n$ matrix and the equation Ax = b is consistent for some b, then the columns of A span \mathbb{R}^m .
- 3. (5%) Which of the following statement is **False**?
 - (A) If A and B are row equivalent $m \times n$ matrices and if the columns of A span \mathbb{R}^m , then so do the columns of B.
 - (B) In some cases, it is possible for four vectors to span \mathbb{R}^5 .
 - (C) If u and v are in $\mathbb{R}^{\tilde{n}}$, then $-\mathbf{u}$ is in $\mathrm{Span}\{\mathbf{u},\mathbf{v}\}$.
 - (D) If A is a 6×5 matrix, the linear transformation $x \mapsto Ax$ cannot map \mathbb{R}^5 onto \mathbb{R}^6 .
 - (E) A linear transform is a function.
- 4. (5%) Which of the following statement is **False**?
 - (A) If A and B are $m \times n$, then both AB^T and A^TB are defined.
 - (B) Left-multiplying a matrix B by a diagonal matrix A, with nonzero entries on the diagonal, scales the rows of B.
 - (C) If BC = BD, then C = D.
 - (D) If AB = BA and if A is invertible, then $A^{-1}B = BA^{-1}$.
 - (E) An elementary $n \times n$ matrix has either n or n+1 nonzero entries.
- 5. (5%) Which of the following statement is **False**?
 - (A) If B is formed by adding to one row of A a linear combination of other rows, then $\det(\mathbf{A}) = \det(\mathbf{B})$.
 - (B) $\det(\mathbf{A}^T\mathbf{A}) \geq 0$.
 - (C) If $A^3 = 0$, then det(A) = 0.
 - (D) $\det(-\mathbf{A}) = -\det(\mathbf{A})$.
 - (E) If A is invertible, then $\det(A) \det(A^{-1}) = 1$.

科目名稱:線性代數【通訊所碩士班甲組】

題號: 437006

※本科目依簡章規定「可以」使用計算機(廠牌、功能不拘)(混合題)

共3頁第2頁

6. (5%) The dimension of the subspace

$$H = \left\{ \begin{bmatrix} a - 3b + 6c \\ 5a + 4d \\ b - 2c - d \\ a - 2b + 4c - d \end{bmatrix} : a, b, c, d \in \mathbb{R} \right\}$$

- is
- (A) 1.
- (B) 2.
- (C) 3.
- (D) 4.
- (E) 5.
- 7. (5%) Let

$$\mathbf{A} = \begin{bmatrix} 0.4 & -0.3 \\ 0.4 & 1.2 \end{bmatrix}. \text{ As } k \to \infty, \text{ we obtain } \mathbf{A}$$

$$(\mathbf{A}) \begin{bmatrix} -0.5 & -1.75 \\ 1.0 & 1.50 \end{bmatrix}.$$

$$(\mathbf{B}) \begin{bmatrix} -0.75 & -0.5 \\ 1.0 & 1.50 \end{bmatrix}.$$

(C)
$$\begin{bmatrix} -0.5 & 1.50 \\ 1.0 & -0.75 \end{bmatrix}$$

(D)
$$\begin{bmatrix} -1.5 & -0.75 \\ 1.0 & 2.50 \end{bmatrix}$$

(E)
$$\begin{bmatrix} -0.5 & -0.75 \\ 1.0 & 1.50 \end{bmatrix}$$

8. (5%) Let **J** be the $n \times n$ matrix of all 1's, and consider $\mathbf{A} = (a - b)\mathbf{I} + b\mathbf{J}$; that is

$$\mathbf{A} = \begin{bmatrix} a & b & b & \dots & b \\ b & a & b & \dots & b \\ b & b & a & \dots & b \\ \vdots & \vdots & \vdots & \ddots & \vdots \\ b & b & b & \dots & a \end{bmatrix}.$$

Then the eigenvalues of $\vec{\mathbf{A}}$ are

- (A) a + b, and a + (n 1)b.
- (B) a nb, and a + nb.
- (C) a b, and a + (n 1)b.
- (D) a-2b, and a+nb.
- (E) a + b, and a (n 1)b.
- 9. (5%) Let A and B be 4×4 matrices, with det A = -1 and det B = 4. Then,
 - $\det \mathbf{B}^{-1} \mathbf{A} \mathbf{B} + \det \mathbf{A}^T \mathbf{A} + \det 2\mathbf{A} =$
 - (A) -12.
 - (B) -14.
 - (C) -16.
 - (D) -18.
 - (E) -20.

科目名稱:線性代數 【通訊所碩士班甲組】

題號: 437006

※本科目依簡章規定「可以」使用計算機(廠牌、功能不拘)(混合題)

共3頁第3頁

10. (5%) The determinant of

$$\mathbf{A} = \begin{bmatrix} 3a & -7 & 8 & 9 & -6 \\ 0 & 2 & -5 & 7 & 7 \\ 0 & 0 & 1 & 5 & 0 \\ 0 & 0 & 2 & 4 & -1 \\ 0 & 0 & 0 & 2 & 0 \end{bmatrix}$$

is

- (A) 0.
- (B) 12a.
- (C) 13a.
- (D) 14a.
- (E) 15a.
- 二 、問答計算題(請於答案卷作答)
- 1. (15%) Consider the following matrix

$$\mathbf{A} = \begin{bmatrix} -1 & 0 \\ 1 & -1 \\ 1 & 1 \end{bmatrix}$$

- (a) (5%) Please find the eigenvalues and eigenvectors of the matrix $\mathbf{A}\mathbf{A}^T$, where \mathbf{A}^T is the transport of \mathbf{A} .
- (b) (10%) Please calculate the singular value decomposition (SVD) of A.
- 2. (15%) Let **U** and **V** be two $m \times m$ positive definite matrices.
 - (a) (10%) Find a $m \times 1$ complex vector **b**, such that

$$Q = \frac{\mathbf{b}\mathbf{U}\mathbf{b}^H}{\mathbf{b}\mathbf{V}\mathbf{b}^H}$$

is maximized

- (b) (5%) What is the maximum value of Q in (a)?
- 3. (10%) Show that if the set $\{u, v, w\}$ is linearly independent, then so is the set $\{u, u + v, u + v + w\}$.
- 4. (10%) If the columns of a $m \times n$ matrix **A** are linearly independent, show that the projection of a $m \times 1$ vector **A** on to the column space of **A** is

$$\mathbf{p} = \mathbf{A}(\mathbf{A}^T \mathbf{A})^{-1} \mathbf{A}^T \mathbf{b}$$

科目名稱:機率【通訊所碩士班甲組】

一作答注意事項-

- ◆ 考試開始鈴響前不得翻閱試題,並不得書寫、劃記、作答。請先檢查答案卷(卡)之應考證號碼、桌角號碼、應試科目是否正確,如有不同立即請監試人員處理。
- 答案卷限用藍、黑色筆(含鉛筆)書寫、繪圖或標示,可攜帶橡皮擦、無色透明無文字墊板、尺規、修正液(帶)、手錶(未附計算器者)。每人每節限使用一份答案卷,請衡酌作答。
- 答案卡請以2B鉛筆劃記,不可使用修正液(帶)塗改,未使用2B鉛筆、劃記太輕或污損致光學閱讀機無法辨識答案者,後果由考生自負。
- 答案卷(卡)應保持清潔完整,不得折疊、破壞或塗改應考證號碼及條碼,亦不得書寫考生姓名、應考證號碼或與答案無關之任何文字或符號。
- 可否使用計算機請依試題資訊內標註為準,如「可以」使用,廠牌、功能不拘,唯不得攜帶書籍、紙張(應考證不得做計算紙書寫)、具有通訊、記憶、傳輸或收發等功能之相關電子產品或其他有礙試場安寧、考試公平之各類器材入場。
- 試題及答案卷(卡)請務必繳回,未繳回者該科成績以零分計算。
- 試題採雙面列印,考生應注意試題頁數確實作答。
- 違規者依本校招生考試試場規則及違規處理辦法處理。

科目名稱:機率【通訊所碩士班甲組】

題號:437005

※本科目依簡章規定「可以」使用計算機(廠牌、功能不拘)(混合題)

共4頁第1頁

一、選擇題(單選,計分方式:不倒扣,答對得該題全部分數,答錯及未作答得零分)

- 1. (5%) A box contains x white balls and 30 black balls. If a ball is randomly drawn from the box, the probability of drawing a white ball is $\frac{1}{x}$. Find the value of x.
 - (A) 3
 - (B) 5
 - (C) 6
 - (D) 10
 - (E) 30
- 2. (5%) There are s boys and t girls in a class. If a team of 2 boys and 3 girls are selected from the class to participate in a competition, how many different teams can be formed?
 - (A) 6st
 - (B) $\frac{st}{6}$
 - (C) 6st(s-1)(t-1)(t-2)
 - (D) $\frac{st(s-1)(t-1)(t-2)}{6}$
 - (E) $\frac{st(s-1)(t-1)(t-2)}{12}$
- 3. (5%) Suppose that A and B are two independent events. Which of the following is correct?
 - (A) A and B must be mutually exclusive.
 - (B) P(A) + P(B) = 1
 - (C) $P(A \cup B) = P(A)P(B)$
 - (D) $P(A \cap B) = P(A)P(B)$
 - (E) None of the above.
- 4. (5%) Suppose that the probability distribution of a continuous random variable X is memoryless. Let $p, q \ge 0$. Which of the following is correct?
 - (A) P(X
 - (B) P(X > p + q | X > p) = P(X > q)
 - (C) P(X
 - (D) P(X > p + q | X > p) = P(X > p)
 - (E) None of the above.
- 5. (5%) The number of customer arrivals in a working hour of a bank follows the Poisson distribution with mean 8.8. What is the probability that there are not more than 3 arrivals in a working hour?
 - (A) 0.0171
 - (B) 0.0230
 - (C) 0.0244
 - (D) 0.0416
 - (E) None of the above.

科目名稱:機率【通訊所碩士班甲組】

題號: 437005

※本科目依簡章規定「可以」使用計算機 (廠牌、功能不拘)(混合題)

共4頁第2頁

- 6. (5%) Let T be the packet transmission time at a router. If T follows the exponential distribution with non-zero mean $\frac{1}{3}$, what is the median of T?

 - (C) $\frac{2}{\lambda}$
 - (D) $\frac{1}{\lambda}$
 - (E) λ
- 7. (5%) Define $E(X) = \frac{3}{4}$, $E(Y) = \frac{1}{2}$, and $E(XY) = \frac{3}{14}$. Find σ_{XY} .
 - (A) $-\frac{33}{56}$
 - (B) $-\frac{9}{56}$
 - (C) 0
 - (D) $\frac{9}{56}$ (E) $\frac{33}{56}$
- 8. (5%) Let X and Y be two random variables such that $\sigma_{XY} = 0$. Which of the following is correct?
 - (A) X and Y are uncorrelated.
 - (B) X and Y are independent.
 - (C) X = 0 or Y = 0
 - (D) E(X) = 0 or E(Y) = 0
 - (E) $\sigma_X = 0$ or $\sigma_Y = 0$
- 9. (5%) Let A and B be two exponentially distributed random variables with parameters λ_A and λ_B , respectively. That is, $A \sim \text{Exp}(\lambda_A)$ and $B \sim \text{Exp}(\lambda_B)$. Which of the following is true about min (A, B), the minimum of A and B.
 - (A) $\min(A, B) \sim \text{Exp} \left(\min \left(\lambda_A, \lambda_B\right)\right)$
 - (B) $\min(A, B) \sim \text{Exp}(\lambda_A + \lambda_B)$
 - (C) $min(A, B) \sim Exp(\lambda_A \lambda_B)$
 - (D) $\min(A, B) \sim \text{Exp}(|\lambda_A \lambda_B|)$
 - (E) None of the above.

科目名稱:機率【通訊所碩士班甲組】

題號: 437005

※本科目依簡章規定「可以」使用計算機(廠牌、功能不拘)(混合題)

共4頁第3頁

- 10. (5%) Denote x and y as two real numbers. Let U and V be two independent random variables such that their probability density functions are $f_U(x)$ and $f_V(x)$, respectively. Which of the following is correct?
 - (A) $f_{UV}(x, y) = f_U(x) * f_V(y)$
 - (B) $f_{UV}(x,y) = f_U(x+y) * f_V(x+y)$
 - (C) $f_{UV}(x,y) = \frac{f_{U}(x)}{f_{V}(y)}$
 - (D) $f_{UV}(x, y) = f_U(x) f_V(y)$
 - (E) None of the above.
- 二、問答計算題:
- 1. (10%) Consider a four-point sample space $\Omega = \{w_1, w_2, w_3, w_4\}$ with probabilities assigned to the sample events as given by

$$P(\{w_1\}) = \frac{1}{2}, P(\{w_2\}) = \frac{1}{4}, P(\{w_3\}) = \frac{1}{8}, P(\{w_4\}) = \frac{1}{8}.$$

Define random variables (RVs) X and Y as

$$X(w_1) = 1$$
, $X(w_2) = 1$, $X(w_3) = 2$, $X(w_4) = 3$,

$$Y(w_1) = 3$$
, $Y(w_2) = 3$, $Y(w_3) = 1$, $Y(w_4) = 1$.

Determine the distribution function of X. Is it the same for Y?

2. (10%) Assume that two RVs X and Y are related by

$$Y = \cos X$$
.

Let the PDF of X be given by

$$f_X(x) = \begin{cases} \frac{1}{2\pi}, & -\pi < x < \pi \\ 0, & \text{elsewhere.} \end{cases}$$

Determine the covariance of X and Y.

3. (10%) Consider the two RVs X and Y with the joint PDF:

$$f_{X,Y}(x,y) = \frac{1}{2\pi\sigma^2} e^{\frac{-(x^2+y^2)}{2\sigma^2}}.$$

Let Z be a complex-valued RV, and define Z = X + jY. Determine the joint PDF of Z and its complex conjugate Z^* .

科目名稱:機率【通訊所碩士班甲組】

題號:437005

※本科目依簡章規定「可以」使用計算機 (廠牌、功能不拘)(混合題)

共4頁第4頁

4. (20%) Let g(x) be the Gaussian probability density function (PDF) given by

$$g(x) = \frac{1}{\sqrt{2\pi}}e^{\frac{-x^2}{2}},$$

and let h(x) be an antisymmetric function shown in Fig. 1. Define a function expressed as

$$f(x_1, x_2) = g(x_1)g(x_2) + h(x_1)h(x_2).$$

Please provide your reasons for answering the following questions.

- (a). (5%) Is $f(x_1, x_2)$ a well-defined joint PDF of the RVs X_1 and X_2 ?
- (b). (5%) Whether X_1 and X_2 are jointly Gaussian?
- (c). (5%) Is the marginal PDF of X_1 Gaussian?
- (d). (5%) Are X_1 and X_2 independent?

Fig. 1

科目名稱:電磁學【電機系碩士班戊組、通訊所碩士班乙組、電波聯合碩士班】

一作答注意事項-

- 考試開始鈴響前不得翻閱試題,並不得書寫、劃記、作答。請先檢查答案卷(卡)之應考證號碼、桌角號碼、應試科目是否正確,如有不同立即請監試人員處理。
- 答案卷限用藍、黑色筆(含鉛筆)書寫、繪圖或標示,可攜帶橡皮擦、無色透明無文字墊板、尺規、修正液(帶)、手錶(未附計算器者)。每人每節限使用一份答案卷,請衡酌作答。
- 答案卡請以2B鉛筆劃記,不可使用修正液(帶)塗改,未使用2B鉛筆、劃記太輕或污損致光學閱讀機無法辨識答案者,後果由考生自負。
- 答案卷(卡)應保持清潔完整,不得折疊、破壞或塗改應考證號碼及條碼,亦不得書寫考生姓名、應考證號碼或與答案無關之任何文字或符號。
- 可否使用計算機請依試題資訊內標註為準,如「可以」使用,廠牌、功能不拘,唯不得攜帶書籍、紙張(應考證不得做計算紙書寫)、具有通訊、記憶、傳輸或收發等功能之相關電子產品或其他有礙試場安寧、考試公平之各類器材入場。
- 試題及答案卷(卡)請務必繳回,未繳回者該科成績以零分計算。
- 試題採雙面列印,考生應注意試題頁數確實作答。
- 違規者依本校招生考試試場規則及違規處理辦法處理。

科目名稱:電磁學【電機系碩士班戊組、通訊所碩士班乙組、電波聯合碩士班】題號:482004 ※本科目依簡章規定「可以」使用計算機(廠牌、功能不拘)(問答申論題) 共1頁第1頁

- 1. (25%) The radius of the inner conducting sphere and the inner radius of the outer spherical conductor are R_i and R_o, respectively. The voltage between these two concentric spherical conductors is V. The space between the conductors is filled with a dielectric medium with the permittivity ε. Determine the stored electrostatic energy.
- 2. (25%) The magnetic flux density vector is $\mathbf{B} = (5kx+4)a_x (3ky+10y)a_y + (8kz)a_z$ in free space. Please determine the value of the constant k.
- 3. (10%) Write the frequency-domain Maxwell's equations with time-varying source. Define phase velocity and group velocity.
- 4. (15%) The magnetic field intensity of a linearly polarized uniform plane wave propagating in the +y-direction in seawater [$\varepsilon_r = 80$, $\mu_r = 1$, $\sigma = 4$ (S/m)] is

$$\vec{H} = \hat{a}_x 0.1 \sin \left[10^{10} \, \pi t - \frac{\pi}{3} \right]$$
 (A/m)

at y = 0.

- a) Determine the attenuation constant, the phase constant, the intrinsic impedance, the phase velocity, the wavelength, and the skin depth. (5%)
- b) Find the location at which the amplitude of \vec{H} is 0.01 (A/m). (5%)
- c) Write the expressions for $\vec{E}(y, t)$ and $\vec{H}(y, t)$ at y = 0.5 (m) as function of t. (5%)
- 5. (10%) For the case of oblique incidence of a uniform plane wave with perpendicular polarization on a perfectly conducting plane boundary as shown in Fig. 1, write (a) the instantaneous expressions

$$\vec{E}_1(x,z;t)$$
 and $\vec{H}_1(x,z;t)$

For the total field in medium 1, using a cosine reference, (5%) and (b) the time-average Poynting vector. (5%)

- 6. (5%) A standard air-filled S-band rectangular waveguide has dimensions a = 7.21 (cm) and b = 3.40 (cm). What mode types can be used to transmit electromagnetic waves having the 5-cm wavelengths?
- 7. (10%) Find the input impedance of the lossless transmission line shown in Fig. 2.

$$z' = l \quad V(z'), I(z') \quad z' = 0$$

$$y', Z_0 \quad V_0^+ e^{\gamma z'}, I_0^+ e^{\gamma z'} \quad z' = 0$$

$$z = 0 \quad z + z' = l \quad z = l$$

$$\Gamma(z') \quad \Gamma(z') \quad \Gamma(z') \quad \Gamma(z') \quad Z$$
Fig. 2

科目名稱:電子學【電機系碩士班戊組選考、通訊所碩士班乙組選考、電波 聯合碩士班選考】

-作答注意事項-

- 考試開始鈴響前不得翻閱試題,並不得書寫、劃記、作答。請先檢查答案卷(卡)之應考證號碼、桌角號碼、應試科目是否正確,如有不同立即請監試人員處理。
- 答案卷限用藍、黑色筆(含鉛筆)書寫、繪圖或標示,可攜帶橡皮擦、無色透明無文字墊板、尺規、修正液(帶)、手錶(未附計算器者)。每人每節限使用一份答案卷,請衡酌作答。
- 答案卡請以2B鉛筆劃記,不可使用修正液(帶)塗改,未使用2B鉛筆、劃記太輕或污損致光學閱讀機無法辨識答案者,後果由考生自負。
- 答案卷(卡)應保持清潔完整,不得折疊、破壞或塗改應考證號碼及條碼,亦不得書寫考生姓名、應考證號碼或與答案無關之任何文字或符號。
- 可否使用計算機請依試題資訊內標註為準,如「可以」使用,廠牌、功能不拘,唯不得攜帶書籍、紙張(應考證不得做計算紙書寫)、具有通訊、記憶、傳輸或收發等功能之相關電子產品或其他有礙試場安寧、考試公平之各類器材入場。
- 試題及答案卷(卡)請務必繳回,未繳回者該科成績以零分計算。
- 試題採雙面列印,考生應注意試題頁數確實作答。
- 違規者依本校招生考試試場規則及違規處理辦法處理。

科目名稱:電子學【電機系碩士班戊組選考、通訊所碩士班乙組選考、電波聯合碩士班選考】題號:482003

※本科目依簡章規定「可以」使用計算機(廠牌、功能不拘)(問答申論題) 共2頁第1頁

- 1. (15%) A third-order low-pass filter has transmission zeros at $\omega = 2$ rad/s and at $\omega = \infty$. Its natural modes are at s = -1 and $s = -0.5 \pm j0.8$. The dc gain is unity. Find the transfer function T(s). (15%*1)
- 2. (30%) For the common-base circuit in Fig. 1, assuming the bias current to be about 1 mA, $\beta = 100$, $C_{\mu} = 0.5$ pF, $r_e = 25 \Omega$, and $f_T = 1000$ MHz:
 - (a) Estimate the midband gain V_o/V_s .
 - (b) Use the short-circuit time-constants method to estimate the lower 3-dB frequency, f_L . (Hint: In determining the resistance seen by C_1 , the effect of the 47-k Ω resistor must be taken into account.)
 - (c) Find the high-frequency poles, and estimate the upper 3-dB frequency, f_H . (10%*3)

Fig. 1

- 3. (20%) For the emitter-follower circuit shown in Fig. 2 the BJT used is specified with a β value of 100, find:
 - (a) I_E , V_E , and V_B . (10%)
 - (b) the input resistance R_i . (5%)
 - (c) the voltage gain v_0/v_s . (5%)

科目名稱:電子學【電機系碩士班戊組選考、通訊所碩士班乙組選考、電波聯合碩士班選考】題號:482003

※本科目依簡章規定「可以」使用計算機(廠牌、功能不拘)(問答申論題) 共2頁第2頁

- 4. (35%) Consider the common-emitter amplifier of Fig. 3 under the following conditions: $R_s = 5 \text{ k}\Omega$, $R_1 = 33 \text{ k}\Omega$, $R_2 = 22 \text{ k}\Omega$, $R_E = 3.9 \text{ k}\Omega$, $R_C = 4.7 \text{ k}\Omega$, $R_L = 5.6 \text{ k}\Omega$, $V_{CC} = 5 \text{ V}$. The dc emitter current can be shown to be $I_E \approx 0.33 \text{ mA}$, at which $\beta_0 = 120$, $r_0 = 300 \text{ k}\Omega$, and $r_x = 50 \Omega$.
 - (a) Find the input resistance, R_{in} . (Hint: $R_{in} = R_1 /\!\!/ R_2 /\!\!/ (r_x + r_\pi)$) (10%)
 - (b) Find the midband gain, A_M . (10%)
 - (c) For $C_{C1} = C_{C2} = 5 \,\mu\text{F}$ and $C_E = 20 \,\mu\text{F}$, estimate the low-frequency 3-dB frequency. Also find the frequency of the zero introduced by C_E . (15%)

Fig. 3. (a) Common-emitter amplifier stage; (b) Equivalent circuit for the amplifier of Fig. 3(a) in the low-frequency band.

科目名稱:通訊理論【電機系碩士班戊組選考、通訊所碩士班甲組、乙組選考、電波聯合碩士班選考】

一作答注意事項-

- 考試開始鈴響前不得翻閱試題,並不得書寫、劃記、作答。請先檢查答案卷(卡)之應考證號碼、桌角號碼、應試科目是否正確,如有不同立即請監試人員處理。
- 答案卷限用藍、黑色筆(含鉛筆)書寫、繪圖或標示,可攜帶橡皮擦、無色透明無文字墊板、尺規、修正液(帶)、手錶(未附計算器者)。每人每節限使用一份答案卷,請衡酌作答。
- 答案卡請以2B鉛筆劃記,不可使用修正液(帶)塗改,未使用2B鉛筆、劃記太輕或污損致光學閱讀機無法辨識答案者,後果由考生自負。
- 答案卷(卡)應保持清潔完整,不得折疊、破壞或塗改應考證號碼及條碼,亦不得書寫考生姓名、應考證號碼或與答案無關之任何文字或符號。
- 可否使用計算機請依試題資訊內標註為準,如「可以」使用,廠牌、功能不拘,唯不得攜帶書籍、紙張(應考證不得做計算紙書寫)、具有通訊、記憶、傳輸或收發等功能之相關電子產品或其他有礙試場安寧、考試公平之各類器材入場。
- 試題及答案卷(卡)請務必繳回,未繳回者該科成績以零分計算。
- 試題採雙面列印,考生應注意試題頁數確實作答。
- 違規者依本校招生考試試場規則及違規處理辦法處理。

科目名稱:通訊理論【電機系碩士班戊組選考、通訊所碩士班甲組、乙組選考、電波聯合碩士班選考】題號:437002

※本科目依簡章規定「可以」使用計算機(廠牌、功能不拘)(問答申論題) 共3頁第1頁

- 1. (20%) We are given the complex baseband signal $x_z(t) = \text{sinc}(t-1) + j2\text{sinc}(t)$.
 - (A)(5%) Calculate the real and imaginary parts of the Fourier transform $X_z(f)$. To express the transforms, please use the function rect(t), which is defined as a rectangle of unit height and spanning the interval [-1/2,1/2].
 - (B) (5%) Plot the real and imaginary parts of $X_z(f)$.
 - (C) (10%) Plot the real and imaginary parts of the Fourier transform of the bandpass signal obtained by upconverting $x_z(t)$ to the carrier frequency of 10 Hz.
- 2. (20%) Let $x(t) = m(t) + \cos(\omega_c t)$. Let W be the bandwidth of m(t). Assume that the average value of m(t) is zero and that the maximum value of |m(t)| is M. Also assume that the square-law device is defined by $y(t) = 4x(t) + 2x^2(t)$.
 - (A)(5%) Write the equation for y(t).
 - (B) (10%) Describe the filter with input signal y(t) that produces an AM signal for g(t), where g(t) represents the output of the filter.
 - (C) (5%) Specify the requirement of M to ensure no distortion when using envelope demodulation.
- 3. (10%) A transmitter uses a carrier frequency of 1000 Hz, with the unmodulated carrier represented as $A_c \cos(2\pi f_c t)$. Determine both the phase and frequency deviation for each of the following transmitter outputs:

(A)(5%)
$$x_c(t) = \cos[2\pi(1000)t + 40\sin(5t^2)]$$

(B) (5%)
$$x_c(t) = \cos[2\pi(600)t]$$

4. (10%) Consider the following three signals:

(A) (6%) Use Gram-Schmidt procedure to find the set of basis functions from the three signals and determine the dimensionality of the set.

科目名稱:通訊理論【電機系碩士班戊組選考、通訊所碩士班甲組、乙組選考、電波聯合碩士班 選考】題號:437002

※本科目依簡章規定「可以」使用計算機(廠牌、功能不拘)(問答申論題) 共3頁第2頁

- (B) (2%) Find the signal-space representation of the three signals based on the basis functions obtained in (a). (Represent the signals in terms of vectors)
- (C) (2%) Determine the minimum distance between any pair of waveforms.
- 5. (20%) Let x(t) denote a real valued WSS random process with an autocorrelation function $R_x(\tau)$ and $y(t) = x(t) \cos(2\pi f_c t + \theta)$, $\theta \sim U(0.2\pi)$.
 - (A)(5%) Find $R_{\nu}(\tau)$.
 - (B) (5%) y(t) is passed through a low-pass filter with a frequency-domain response H(f)

$$= \begin{cases} 1, & |f| < f_c \\ 0, & |f| > f_c \end{cases}$$
 and $\tilde{y}(t)$ denotes the filter output. Find $E[y(t)^2]$.

- (C) (10%) If we let $\theta = \frac{\pi}{4}$ and $r(t) = s(t) \cos(2\pi f_c t) + y(t)$, please show how to demodulate s(t) based on r(t) in detail.
- 6. (10%) Let x(t) = g(t) + w(t), $0 \le t \le T$, be the received noisy signal, where g(t) denotes the transmitted pulse that represents a binary symbol 0 or 1 and w(t) denotes an additive white noise process with zero mean and power spectral density $(PSD) \frac{N_0}{2}$. Since the filter is linear, the result output can be express as $y(t) = g_o(t) + n(t)$, where $g_o(t)$ denotes the response to g(t) and g(t) denotes the response to g(t). We know that the peak pulse signal to noise ratio of the match filter is $\eta = \frac{|g_0(T)|^2}{E[n^2(t)]}$. Please show that $\eta \le \frac{2}{N_0} \int_{-\infty}^{\infty} |G(f)|^2 df$.

7. (10%) Consider two discrete random variables X and Y with the joint distribution:

P(x,y)	X = -1	X = 0	X = 1
Y = 2	0.1	0.15	0.15
Y = 4	0.05	0.2	0.15
Y = 6	0.05	0.05	0.1

科目名稱:通訊理論【電機系碩士班戊組選考、通訊所碩士班甲組、乙組選考、電波聯合碩士班選考】題號:437002

※本科目依簡章規定「可以」使用計算機(廠牌、功能不拘)(問答申論題)	共3頁第3頁	
(A) (2%) Find the entropy $H(X,Y)$.		
(B) (2%) Find the entropy $H(X)$.		
(C) (4%) Find the entropy $H(X Y)$.		
(D) (2%) Find the mutual information $I(X; Y)$.		
		77

科目名稱:工程數學甲【電機系碩士班甲組、戊組選考、己組、庚組、通訊 所碩士班乙組選考、電波聯合碩士班選考】

一作答注意事項-

- 考試開始鈴響前不得翻閱試題,並不得書寫、劃記、作答。請先檢查答案卷(卡)之應考證號碼、桌角號碼、應試科目是否正確,如有不同立即請監試人員處理。
- 答案卷限用藍、黑色筆(含鉛筆)書寫、繪圖或標示,可攜帶橡皮擦、無色透明無文字墊板、尺規、修正液(帶)、手錶(未附計算器者)。每人每節限使用一份答案卷,請衡酌作答。
- 答案卡請以2B鉛筆劃記,不可使用修正液(帶)塗改,未使用2B鉛筆、劃記太輕或污損致光學閱讀機無法辨識答案者,後果由考生自負。
- 答案卷(卡)應保持清潔完整,不得折疊、破壞或塗改應考證號碼及條碼,亦不得書寫考生姓名、應考證號碼或與答案無關之任何文字或符號。
- 可否使用計算機請依試題資訊內標註為準,如「可以」使用,廠牌、功能不拘,唯不得攜帶書籍、紙張(應考證不得做計算紙書寫)、具有通訊、記憶、傳輸或收發等功能之相關電子產品或其他有礙試場安寧、考試公平之各類器材入場。
- 試題及答案卷(卡)請務必繳回,未繳回者該科成績以零分計算。
- 試題採雙面列印,考生應注意試題頁數確實作答。
- 違規者依本校招生考試試場規則及違規處理辦法處理。

科目名稱:工程數學甲【電機系碩士班甲組、戊組選考、己組、庚組、通訊所碩士班乙組選考、 電波聯合碩士班選考】題號:431002

※本科目依簡章規定「可以」使用計算機(廠牌、功能不拘)(選擇題)

共4頁第1頁

下面 1-8 題為單選題,總分 40 分。每題答對 5 分,答錯或未作答者以 0 分計。總分低於 0 分者以 0分計算。

Use the Fourier series analysis equation to calculate the coefficients a_k (when $k \neq 0$) for the continuous-time periodic signal

 $x(t) = \begin{cases} 1.5, & 0 \le t < 1 \\ -1.5, & 1 \le t < 2 \end{cases}$ with fundamental frequency $\omega_0 = \pi$.

- (A) $\frac{3}{2k\pi}e^{-jk\pi/2}\sin(\frac{k\pi}{2})$ (B) $\frac{3}{2k\pi}e^{-jk\pi}\sin(k\pi)$
- (C) $\frac{3}{k\pi}e^{-jk\pi}\sin(k\pi)$ (D) $\frac{3}{k\pi}e^{-jk\pi/2}\sin(\frac{k\pi}{2})$
- Let $x_1(t)$ be a continuous-time periodic signal with fundamental frequency ω_1 and Fourier coefficients a_k . Given that $x_2(t) = x_1(1-t) + x_1(t-1)$. Find a relationship between the Fourier series coefficients b_k of $x_2(t)$ and the coefficients a_k .
 - (A) $b_k = e^{-jk\omega_1}(a_k + a_{-k})$ (B) $b_k = e^{-jk\omega_1}(a_k a_{-k})$ (C) $b_k = jk\omega_1(a_k + a_{-k})$ (D) $b_k = jk\omega_1(a_k a_{-k})$
- What is the Fourier transform of $e^{-2|t-1|}$?

(A) $2e^{-j\omega}/(4+\omega^2)$ (B) $4e^{-j\omega}/(4+\omega^2)$ (C) $4e^{-j\omega}/(2+j\omega)$ (D) $2e^{-j\omega}/(2+j\omega)$

Use the Fourier transform synthesis equation to determine the inverse Fourier transforms of $X(j\omega) =$ 4. $2\pi\delta(\omega) + \pi\delta(\omega - 4\pi) + \pi\delta(\omega + 4\pi)$.

(A) $1 + \pi cos(4\pi t)$ (B) $1 + sin(4\pi t)$ (C) $1 + cos(4\pi t)$ (D) $1 + \pi sin(4\pi t)$

- Use the Fourier transform synthesis equation to determine the inverse Fourier transforms of 5.

 $X(j\omega) = \begin{cases} 2, & 0 \le \omega \le 2\\ -2, -2 \le \omega < 0\\ 0, & |\omega| > 2 \end{cases}$

- (A) $(4j\cos^2 t)/\pi t$ (B) $(4\sin^2 t)/\pi t$ (C) $(4j\sin^2 t)/\pi t$ (D) $(4\cos^2 t)/\pi t$

What is the Laplace transform of $e^{-5t}u(t-1)$?

- (A) $e^{(5+s)}/(s+5)$ (B) $e^{-(5+s)}/(s+5)$ (C) $e^{-(5+s)}/(s-5)$ (D) $e^{(5+s)}/(s-5)$

科目名稱:工程數學甲【電機系碩士班甲組、戊組選考、己組、庚組、通訊所碩士班乙組選考、 電波聯合碩士班選考】題號:431002

※本科目依簡章規定「可以」使用計算機(廠牌、功能不拘)(選擇題)

共4頁第2頁

7. Determine the inverse Laplace transform of

$$X(s) = \frac{2(s+2)}{s^2 + 7s + 12}, \ \mathcal{R}e\{s\} > -3.$$

(A)
$$4e^{-4t}u(-t) - 2e^{-3t}u(-t)$$
 (B) $4e^{4t}u(t) - 2e^{3t}u(t)$

(B)
$$4e^{4t}u(t) - 2e^{3t}u(t)$$

(C)
$$4e^{4t}u(-t) - 2e^{3t}u(-t)$$
 (D) $4e^{-4t}u(t) - 2e^{-3t}u(t)$

(D)
$$4e^{-4t}u(t) - 2e^{-3t}u(t)$$

One corner of a rectangular parallelepiped is at (1, 1, 1), and three incident sides extend from this 8. point to (-2, 1, 6), (3, 5, 7) and (0, 1, 6). Please identify the volume of this solid.

(A) 20

(B) 40

(C) 18

(D) 42

下面 9-20 題為複選題,每題 5 分,總分 60 分,每題有五個選項,其中至少有一個是正確答案, 答錯1個選項者,得3分,答錯2個選項者,得1分,答錯多於2個選項或未作答者,該題以0 分計算。

- Consider the wave equation $a^2u_{xx}=u_{tt}$ for a string tied to the x-axis at x=0 and at $x=\pi$. When the string starts to vibrate, the motion takes place in the xu-plane. Let u(x,t) denote the vertical displacement from the x-axis for t > 0 and $a^{\bar{2}}$ be a real constant. The initial displacement is f(x), $0 < x < \pi$ and the string is released from rest. Given the product solution u(x,t) = X(x)T(t), which of the following is/are correct?
 - (A) The wave equation of this string is elliptic.
 - (B) All the boundary conditions belong to Dirichlet conditions.
 - (C) The initial condition yields T'(0) = 0.
 - (D) This is referred to as a boundary-value problem.
 - (E) One of the boundary conditions yields $X(0) = \pi$.
- 10. Assume the product solution to the wave equation in Question 9 is found as $u(x,t) = A \cdot \cos(B \cdot at)$ $\sin(Cx)$. If the initial displacement f(x) is a sinusoidal wave with the amplitude of 1/100 and the frequency of $3/2\pi$, which of the following is/are correct?
 - (A) There exists a trivial solution.
 - (B) B = arbitratry integer.
 - (C) C = 3.
 - (D) There is no motion at $x = 2\pi/3$ and all other x points vibrate vertically over time.
 - (E) The vertical displacement is reversed (-f(x)) when $t = k\pi/a$, k = 1, 2, 3...
- 11. Consider the differential equation $P'(t) = aP(t) bP(t)^2$ with the initial condition of $P(0) = p_0$, where a and b are positive real constants. Which of the following is INCORRECT?
 - (A) This is a linear differential equation.
 - (B) This is a Bernoulli's equation.
 - (C) None of the critical points are attractors.
 - (D) When $t \to \infty$, P(t) = a/b.
 - (E) The solution interval is $(-\infty, \infty)$.

科目名稱:工程數學甲【電機系碩士班甲組、戊組選考、己組、庚組、通訊所碩士班乙組選考、電波聯合碩士班選考】題號:431002

※本科目依簡章規定「可以」使用計算機(廠牌、功能不拘)(選擇題)

共4頁第3頁

- 12. Given $X' = \begin{pmatrix} 2 & 2 \\ 1 & 3 \end{pmatrix} X$, which of the following is correct?
 - (A) There are two distinct eigenvalues.
 - (B) The stationary point is a repeller.
 - (C) All solutions will converge onto the origin.
 - (D) One of the eigenvalues is $\lambda_2 = -1$.
 - (E) One of the solution vectors is $K_1 = \binom{1}{1} e^{-4t}$.
- 13. Define the matrix **A** as \mathbf{pq}^T , where **p** and **q** are nonzero vectors in $\mathbb{R}^{n\times 1}$. Which of the following statements are true?
 - (A) rank(A) may be 2.
 - (B) q is an eigenvector of A.
 - (C) $\mathbf{q}^T \mathbf{p}$ is an eigenvalue of **A**.
 - (D) The linear equation Ax = 0 has infinitely many solutions.
 - (E) The linear equation Ax = b with b = q has infinitely many solutions.
- 14. Define the matrix \mathbf{M} as $\mathbf{I} 2\mathbf{u}\mathbf{u}^T$, where \mathbf{u} is a unit vector in $\mathbb{R}^{n \times 1}$, meaning $\mathbf{u}^T\mathbf{u} = 1$. Which of the following statements are true?
 - $(A)\mathbf{M} = \mathbf{M}^T.$
 - (B) $\mathbf{M}^T \mathbf{M} = \mathbf{I}$.
 - (C) $M = M^{-1}$.
 - $(D) \det(\mathbf{M}) = 1.$
 - (E) **M** has eigenvalues that are complex with non-zero real components.
- 15. Let $N(\mathbf{A})$ denote the null space of \mathbf{A} , and $R(\mathbf{A})$ denote the range space of \mathbf{A} . Suppose $\mathbf{u} \in R(\mathbf{A})$, $\mathbf{v} \in N(\mathbf{A}^T)$, and both \mathbf{u} and \mathbf{v} are non-zero. Define $||\mathbf{x}|| = \sqrt{\langle \mathbf{x}, \mathbf{x} \rangle}$. Suppose

$$\mathbf{x}_1 = \mathbf{u} + 2\mathbf{v}, \ \mathbf{x}_2 = 2\mathbf{u} - \mathbf{v}, \ \|\mathbf{x}_1\|^2 = 29, \ \|\mathbf{x}_2\|^2 = 41$$

Which of the following statements are true?

- (A) $\|\mathbf{u}\| = \sqrt{5}$.
- (B) $\|\mathbf{u}\| = 3$.
- (C) $\|\mathbf{v}\| = 7$.
- (D) $\|\mathbf{v}\| = \sqrt{5}$.
- (E) $\|\mathbf{u}\| + \|\mathbf{v}\| = 8$.
- 16. Let $\{\mathbf{u}_1, \mathbf{u}_2, \mathbf{u}_3\}$ be an orthogonal basis for an inner product space. Suppose $\|\mathbf{u}_1\| = 2$, $\|\mathbf{u}_2\| = 3$, $\|\mathbf{u}_3\| = 5$. If $\mathbf{x} = c_1\mathbf{u}_1 + c_2\mathbf{u}_2 + c_3\mathbf{u}_3$ is a vector with the properties $\langle \mathbf{x}, \mathbf{u}_1 \rangle = 12$, $\|\mathbf{x}\|^2 = 145$, and the orthogonal projection of \mathbf{x} onto \mathbf{u}_3 is $-2\mathbf{u}_3$, then which of the following statements are true? (A) $c_1 = 12$, (B) $c_2 = 2$, (C) $c_3 = -2$, (D) $\langle \mathbf{x}, \mathbf{u}_2 \rangle = 18$, (E) $\langle \mathbf{x}, \mathbf{u}_3 \rangle = 50$

科目名稱:工程數學甲【電機系碩士班甲組、戊組選考、己組、庚組、通訊所碩士班乙組選考、 電波聯合碩士班選考】題號:431002

※本科目依簡章規定「可以」使用計算機(廠牌、功能不拘)(選擇題)

共4頁第4頁

17. Let $L: V \to W$ be a linear transformation, and $E = \{\mathbf{v}_1, \mathbf{v}_2, \mathbf{v}_3\}$ and $F = \{\mathbf{w}_1, \mathbf{w}_2, \mathbf{w}_3\}$ be ordered bases for V and W, respectively. Suppose \mathbf{A} is the matrix representing L relative to E and F, and

$$\mathbf{A} = \begin{bmatrix} 1 & 2 & 7 \\ 3 & 4 & 8 \\ 5 & 6 & 9 \end{bmatrix}.$$

If $L(\mathbf{v}_1 + 2\mathbf{v}_2) = c_1\mathbf{w}_1 + c_2\mathbf{w}_2 + c_3\mathbf{w}_3$, then which of the following statements are true?

(A)
$$c_1 = 7$$
, (B) $c_2 = 11$, (C) $c_3 = 17$, (D) $c_1 + c_2 + c_3 = 34$, (E) $c_1 + c_2 + c_3 = 40$

18. Let

$$\mathbf{A} = \begin{bmatrix} 1 & -2 & 0 \\ 0 & 1 & 1 \\ -1 & 3 & 2 \\ 2 & 0 & 3 \end{bmatrix}.$$

Which of the following vectors are in the column space of $\mathbf{A}\mathbf{A}^{T}$?

- (A) $[0, 2, 3, 7]^T$
- (B) $[3,0,2,4]^T$
- (C) $[3, 1, 0, 4]^T$
- (D) $[5, 4, -1, 2]^T$
- (E) $[-1, 2, 4, 5]^T$

19. Define $i = \sqrt{-1}$. Suppose $\int_C f(z)dz = a + bi$, where f(z) = (z + 2)/z and C is the semicircle $z = 2e^{i\theta} (0 \le \theta \le \pi)$. Which of the following statements are true?

(A)
$$a = -4$$
, (B) $a = 2$, (C) $b = -2\pi$, (D) $b = 0$, (E) $b = 2\pi$

20. Define $i = \sqrt{-1}$. Suppose $\int_C f(z)dz = a + bi$, where $f(z) = 1/(z^2 + 4)$ and C is the positively oriented circle |z - i| = 2. Which of the following statements are true?

(A)
$$a = \pi/8$$
, (B) $a = \pi/4$, (C) $a = \pi/2$, (D) $b = \pi/8$, (E) $b = \pi/4$