科目名稱:工程數學甲【電機系碩士班甲組、己組、庚組、電波聯合選考:電機系碩士班戊組、通訊所碩士班乙組】

-作答注意事項-

- 考試開始鈴響前不得翻閱試題,並不得書寫、劃記、作答。請先檢查答案卷(卡)之應考證號碼、桌角號碼、應試科目是否正確,如有不同立即請監試人員處理。
- 答案卷限用藍、黑色筆(含鉛筆)書寫、繪圖或標示,可攜帶橡皮擦、無色透明無文字墊板、尺規、修正液(帶)、手錶(未附計算器者)。每人每節限使用一份答案卷,請衡酌作答(不得另攜帶紙張)。
- 答案卡請以2B鉛筆劃記,不可使用修正液(帶)塗改,未使用2B鉛 筆、劃記太輕或污損致光學閱讀機無法辨識答案者,後果由考生自負。
- 答案卷(卡)應保持清潔完整,不得折疊、破壞或塗改應考證號碼及條碼,亦不得書寫考生姓名、應考證號碼或與答案無關之任何文字或符號。
- 可否使用計算機請依試題資訊內標註為準,如「可以」使用,廠牌、功能不拘,唯不得攜帶具有通訊、記憶或收發等功能或其他有礙試場安寧、考試公平之各類器材、物品(如鬧鈴、行動電話、電子字典等)入場。
- 試題及答案卷(卡)請務必繳回,未繳回者該科成績以零分計算。
- 試題採雙面列印,考生應注意試題頁數確實作答。
- 違規者依本校招生考試試場規則及違規處理辦法處理。

科目名稱:工程數學甲【電機系碩士班甲組、己組、庚組、電波聯合選考:電機系碩士班戊組、 通訊所碩士班乙組】題號:431002

※本科目依簡章規定「可以」使用計算機(廠牌、功能不拘)(混合題)

共4頁第1頁

下面 1-15 題為單選題,總分 45 分。每題答對 3 分,答錯扣 4 分,未作答者以 0 分計。總分低於 0分者以0分計算。

- Consider the autonomous differential equation $y' = (2/\pi)y \sin y$. Which of the following is **INCORRECT?**
 - (A) There are three critical points.
 - (B) One of critical point is semi-stable.
 - (C) Two of critical points are unstable.
 - (D) One of the critical points is 0.
- If $y = e^{3x} \cos x$ is the solution to $\frac{d^2y}{dx^2} 6\frac{dy}{dx} + ky = 0$, what is the value of k? (A) 3 (B) -2 (C) 10 (D) 8

- The differential equation $e^x \frac{dy}{dx} + 3y = x^2y$ is linear and separable.
 - (A) True
- (B) False
- The improved Euler's method is what type of Runge-Kutta method? 4.
 - (A) First order
- (B) Second order
- (C) Third order
- (D) Fourth order
- Consider y(x) is the solution to the initial-value problem $x^2y'' 2xy' + 2y = 0$ where x > 0, 5. y(1) = 4, and y'(1) = 9, use Euler's method to compute y(1.2). Given h = 0.1, which of the following is correct?
 - (A) The general solution is $y = C_1 x C_2 x^2$, where $C_1 + C_2 = 6$.
 - (B) The general solution is $y = C_1 x + C_2 x^2$, where $C_1 + C_2 = 6$.
 - (C) y(1.2) = 5.9.
 - (D) y(1.2) = 6.
- Given the three vectors (1, 0, 3, 1), (0, 1, -6, -1) and (0, 2, 1, 0) in \mathbb{R}^4 , they are linearly dependent. (A) True (B) False
- Provided the system below, the rank is

(A) 1
$$X_1 - X_3 + 2X_4 + X_5 + 6X_6 = -3$$

$$X_2 + 2X_3 + 3X_4 + 2X_5 + 4X_6 = 1$$

$$X_1 - 4X_2 + 3X_3 + X_4 + 2X_6 = 0$$
(C) 3 (D) 4

- Which one of the following is correct regarding Fourier series?
 - (A) $e^{-|x|}$ is odd function.
 - (B) f' must be continuous on the interval [a, b] to ensure that the Fourier series of f on [a,b] converges to f.
 - (C) f(x) = |x| is continuous on $[-\pi, \pi]$.
 - (D) The Fourier series of $f(x) = x^2 + 1$, where 0 < x < 3, converges to 0 at x = 0.

科目名稱:工程數學甲【電機系碩士班甲組、己組、庚組、電波聯合選考:電機系碩士班戊組、 通訊所碩士班乙組】題號:431002

※本科目依簡章規定「可以」使用計算機(廠牌、功能不拘)(混合題)

Expand $f(x) = 2x^2 - 1$, -1 < x < 1 in a Fourier series and yield $f(x) = A + \sum_{n=1}^{B} C$. Which of the following is correct?

(A) A = -2/3

(B) B = 4 (C) $C = (-1)^n \cos n\pi x$ (D) None of the above

10. If $y_1(x) = x$ is one of the solutions of the following differential equation, what is the other linear independent solution $y_2(x)$?

 $y'' - \frac{2x}{1+x^2}y' + \frac{2}{1+x^2}y = 0$ (A) $y_2(x) = 2x^2 + 1$ (B) $y_2(x) = \frac{x^2 - 1}{x}$ (C) $y_2(x) = \frac{1}{x} - 1$ (D) $y_2(x) = x^2 - 1$

11. Use the Laplace transform to solve the following initial-value problem. If the solution is y = A + A $Be^{-t} + Ce^{3t} + De^{4t}$, which of the following is true?

 $y'' - 4y' = 6e^{3t} - 3e^{-t}, y(0) = 1, y'(0) = -1$

(A) A + B + C + D = 1.

(B) B = -2

- (C) A + B + D = 2
- (D) All of the above
- 12. The Laplace transform of a function f is denoted by $\mathcal{L}\{f\}$. If $\mathcal{L}\{f(t)\} = F(s)$ and $\mathcal{L}\{g(t)\} = G(s)$, then $\mathcal{L}^{-1}{F(s)G(s)} = f(t)g(t)$.

(A) True

- (B) False
- 13. If $\mathcal{L}{f(t)}$ represents the Laplace transform of a function f(t). Let $f(t) = \begin{cases} 3 & \text{if } 0 \le t \le 2 \\ 5 t, & \text{if } t > 2 \end{cases}$,

then $\mathcal{L}{f(t)}$ is $(A) \frac{3}{s^2} + \frac{e^{2s}}{s^2}$

(B) $\frac{3}{s} + \frac{e^{-2s}}{s^2}$ (C) $\frac{3}{s} - \frac{e^{-2s}}{s^2}$ (D) $\frac{3}{s^2} - \frac{e^{-2s}}{s^2}$

- 14. Provided the differential equation $\frac{\partial^2 u}{\partial x^2} + \frac{\partial^2 u}{\partial y^2} = 0$, which of the following is true?
 - (A) first order, linear, non-homogeneous

(B) second order, nonlinear

- (C) second order, linear, non-homogeneous
- (D) second order, linear, homogeneous
- 15. The Fourier transform of a function f is denoted by $\Im\{f\}$. Suppose $\Im\{f(t)\} = F(\omega)$, $\Im\{g(t)\} = F(\omega)$ $g(\omega)$, which of the following is INCORRECT?

(A) $\int_{-\infty}^{\infty} f(\tau)g(t-\tau) d\tau = \Im^{-1}\{F(\omega)G(\omega)\}$

(B) $\int_{-\infty}^{\infty} f(t-\tau)g(\tau) d\tau = \Im^{-1}\{F(\omega)G(\omega)\}\$

(C) $\Im\{f(t-\tau)\}=F(\omega)e^{-i\omega\tau}$

(D) None of the above

科目名稱:工程數學甲【電機系碩士班甲組、己組、庚組、電波聯合選考:電機系碩士班戊組、通訊所碩士班乙組】題號:431002

※本科目依簡章規定「可以」使用計算機(廠牌、功能不拘)(混合題)

共4頁第3頁

下面 16-21 題為複選題,每題 5分,總分 30分,每題有五個選項,其中至少有一個是正確答案,答錯 1 個選項者,得 3分,答錯 2 個選項者,得 1分,答錯多於 2 個選項或未作答者,該題以零分計算。

- 16. Let **A** and **B** be matrices in $\mathbb{R}^{n \times n}$. Which of the following statements are true?
 - $(A) \det(-A) = -\det(A).$
 - (B) If $AA^T = I$, then det(A) = 1.
 - (C) If $AA^T = I$, then trace(A) = n.
 - (D) If two rows of **A** are equal, then det(A) = 0.
 - (E) If det(A) = det(B), then A and B have the same rank.
- 17. Let $\mathbf{A} \in \mathbb{R}^{3\times 3}$ and its eigenvalues are λ_1 , λ_1 , and λ_2 , where λ_1 and λ_2 are distinct eigenvalues. Suppose the dimension of $N(\mathbf{A} \lambda_1 \mathbf{I})$ is 1, where $N(\mathbf{A})$ denotes the null space of \mathbf{A} . Which of the following statements are true?
 - (A) λ_1 must be a real number (not a complex number).
 - (B) λ_2 must be a real number (not a complex number).
 - (C) The dimension of $N(\mathbf{A} \lambda_2 \mathbf{I})$ equals 1.
 - (D) A is diagonalizable.
 - (E) A has two linearly independent eigenvectors corresponding to λ_1 .
- 18. Let $\mathbf{A} \in \mathbb{R}^{m \times n}$. Consider the linear equation $\mathbf{A}\mathbf{x} = \mathbf{b}$ or the homogeneous linear equation $\mathbf{A}\mathbf{x} = \mathbf{0}$. Which of the following statements are true?
 - (A) If rank(A) = m, then Ax = b has at least one solution for any $b \in \mathbb{R}^m$.
 - (B) If rank(A) = m, then Ax = 0 has only the trivial solution x = 0.
 - (C) If rank(A) = n, then Ax = b has at most one solution for any $b \in \mathbb{R}^m$.
 - (D) If rank(A) = n and m > n, then Ax = 0 has infinitely many solutions.
 - (E) If rank(A) = m and n > m, then Ax = 0 has infinitely many solutions.
- 19. Let **A** and **B** be square matrices. Suppose that **A** is similar to **B**, that is, $\mathbf{B} = \mathbf{P}^{-1}\mathbf{A}\mathbf{P}$ for some nonsingular matrix **P**. Which of the following statements are true?
 - (A) If x is an eigenvector of B, then x is also an eigenvector of A.
 - (B) If y is in the column space of B, then y is also in the column space of A.
 - (C) trace(A) = trace(B).
 - (D) A I is similar to B I.
 - (E) A^5 is similar to B^5 .
- 20. Let $A \in \mathbb{R}^{m \times n}$, R(A) denotes the column space of A, N(A) denotes the null space of A, and dim(S) denotes the dimension of a subspace S. Which of the following statements are true?
 - (A) If $y \in R(A)$, then $y \in R(AA^T)$.
 - (B) If $\mathbf{x} \in N(\mathbf{A})$, then $\mathbf{x} \in N(\mathbf{A}\mathbf{A}^T)$.
 - (C) $\operatorname{rank}(\mathbf{A}) + \dim(N(\mathbf{A})) = \operatorname{rank}(\mathbf{A}^T) + \dim(N(\mathbf{A}^T)).$
 - (D) It is possible for a matrix **A** to have $[2, 1, -1]^T$ in $N(\mathbf{A})$ and $[1, -2, 3]^T$ in $R(\mathbf{A}^T)$.
 - (E) Let $\mathbf{y} \in \mathbb{R}^m$. If $\mathbf{y} = \mathbf{u}_1 + \mathbf{v}_1 = \mathbf{u}_2 + \mathbf{v}_2$, where $\mathbf{u}_1, \mathbf{u}_2 \in R(\mathbf{A})$ and $\mathbf{v}_1, \mathbf{v}_2 \in N(\mathbf{A}^T)$, then $\mathbf{u}_1 = \mathbf{u}_2$ and $\mathbf{v}_1 = \mathbf{v}_2$.

科目名稱:工程數學甲【電機系碩士班甲組、己組、庚組、電波聯合選考:電機系碩士班戊組、 通訊所碩士班乙組】題號:431002

※本科目依簡章規定「可以」使用計算機(廠牌、功能不拘)(混合題) 共4頁第4頁

21. Let

$$\mathbf{A} = \begin{bmatrix} 4 & 1 & 3 & 2 \\ 1 & 4 & 3 & 3 \\ -1 & 11 & 6 & 7 \end{bmatrix}.$$

Which of the following vectors are in the column space of A?

- (A) $[3,1,2]^T$
- (B) $[1,0,-1]^T$
- (C) $[0,1,3]^T$
- (D) $[2,1,1]^T$
- (E) $[4,2,-1]^T$

以下第22題到第23題需要詳明推導計算過程。如推導計算過程錯誤,將酌扣分數或不給分。

22. (10分) 求出以下複平面上之路徑積分值, Z 為複數。

$$\int_C rac{z^5}{1-z^3} dz$$
 ,其中 C 為沿著 $\{z: |z|=2\}$ 正向旋轉一周之封閉路徑。

23. (15分) 利用餘值 (residues) 求取以下瑕積分,其中參數a > 0。

$$\int_0^\infty \frac{\cos ax}{x^2 + 1} dx$$

科目名稱:電子學【電波聯合碩士班選考、通訊所碩士班乙組選考、電機系碩士班戊組選考】

一作答注意事項-

- 考試開始鈴響前不得翻閱試題,並不得書寫、劃記、作答。請先檢查答案卷(卡)之應考證號碼、桌角號碼、應試科目是否正確,如有不同立即請監試人員處理。
- 答案卷限用藍、黑色筆(含鉛筆)書寫、繪圖或標示,可攜帶橡皮擦、無色透明無文字墊板、尺規、修正液(帶)、手錶(未附計算器者)。每人每節限使用一份答案卷,請衡酌作答(不得另攜帶紙張)。
- 答案卡請以 2B 鉛筆劃記,不可使用修正液(帶)塗改,未使用 2B 鉛筆、劃記太輕或污損致光學閱讀機無法辨識答案者,後果由考生自負。
- 答案卷(卡)應保持清潔完整,不得折疊、破壞或塗改應考證號碼及條碼,亦不得書寫考生姓名、應考證號碼或與答案無關之任何文字或符號。
- 可否使用計算機請依試題資訊內標註為準,如「可以」使用,廠牌、功能不拘,唯不得攜帶具有通訊、記憶或收發等功能或其他有礙試場安寧、考試公平之各類器材、物品(如鬧鈴、行動電話、電子字典等)入場。
- 試題及答案卷(卡)請務必繳回,未繳回者該科成績以零分計算。
- 試題採雙面列印,考生應注意試題頁數確實作答。
- 違規者依本校招生考試試場規則及違規處理辦法處理。

科目名稱:電子學【電波聯合碩士班選考、通訊所碩士班乙組選考、電機系碩士班戊組選考】題號:482003

※本科目依簡章規定「可以」使用計算機(廠牌、功能不拘)(問答申論題) 共2頁第1頁

- 1. (30%) For the common-base circuit in Fig. 1, assuming the bias current to be about 1 mA, $\beta = 100$, $C_{\mu} = 0.8$ pF, $r_e = 25 \Omega$, and $f_T = 800$ MHz:
 - (a) Estimate the midband gain V_o/V_s . (10%)
 - (b) Use the short-circuit time-constants method to estimate the lower 3-dB frequency, f_L . (10%) (*Hint:* In determining the resistance seen by C_1 , the effect of the 47-k Ω resistor must be taken into account.)
 - (c) Find the high-frequency poles, and estimate the upper 3-dB frequency, f_H . (10%)

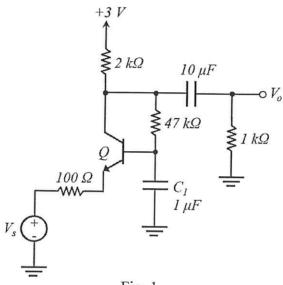
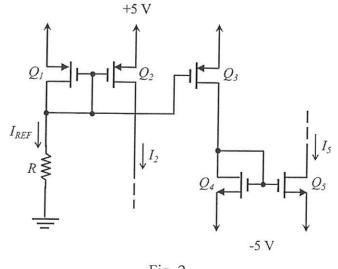



Fig. 1

2. (25%) The current-steering circuit of Fig. 2 is fabricated in a CMOS technology for which $k'_n = 90 \, \mu \text{A/V}^2$, $k'_p = 30 \, \mu \text{A/V}^2$, $V_{tn} = 0.8 \, \text{V}$, and $V_{tp} = -0.9 \, \text{V}$. If all devices have $L = 2 \, \mu \text{m}$, design the circuit so that $I_{REF} = 20 \, \mu \text{A}$, $I_2 = 100 \, \mu \text{A}$, and $I_5 = 40 \, \mu \text{A}$. Use the minimum width of 2 μm for as many of the devices as possible. (a) Give the required width for each transistor and the value of R required. (10%) (b) What is the highest voltage possible at the drain of Q_2 ? (5%) (c) What is the lowest voltage possible at the drain of Q_5 ? If $|V_{Ap}| = 16 \, L$, where L is in μm and V_{Ap} is in volts, (5%) (d) find the output resistance of the current source Q_2 . (5%)

科目名稱:電子學【電波聯合碩士班選考、通訊所碩士班乙組選考、電機系碩士班戊組選考】題號:482003

※本科目依簡章規定「可以」使用計算機(廠牌、功能不拘)(問答申論題) 共2頁第2頁

- 3. (15%) A second-order filter has its poles at $s = -(1/8) \pm j(\sqrt{63}/8)$. The transmission is zero at $\omega = 5$ rad/s and is unity at dc ($\omega = 0$). Find the transfer function.
- 4. (30%) For the emitter-follower circuit shown in Fig. 3 the BJT used is specified to have β values in the range of 20 to 200. For the two extreme values of $\beta = 20$ and $\beta = 200$, find:
 - (a) I_E , V_E , and V_B . (10%)
 - (b) the input resistance R_i . (10%)
 - (c) the voltage gain v_o/v_s . (10%)

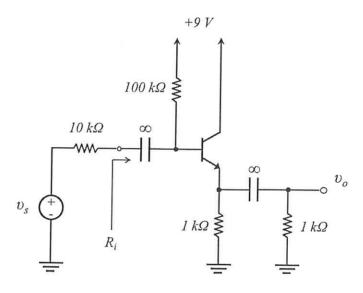


Fig. 3

科目名稱:電磁學【電波聯合碩士班、通訊所碩士班乙組、電機系碩士班戊組】

- 作答注意事項-

- 考試開始鈴響前不得翻閱試題,並不得書寫、劃記、作答。請先檢查答案卷(卡)之應考證號碼、桌角號碼、應試科目是否正確,如有不同立即請監試人員處理。
- 答案卷限用藍、黑色筆(含鉛筆)書寫、繪圖或標示,可攜帶橡皮擦、無色透明無文字墊板、尺規、修正液(帶)、手錶(未附計算器者)。每人每節限使用一份答案卷,請衡酌作答(不得另攜帶紙張)。
- 答案卡請以2B鉛筆劃記,不可使用修正液(帶)塗改,未使用2B鉛 筆、劃記太輕或污損致光學閱讀機無法辨識答案者,後果由考生自負。
- 答案卷(卡)應保持清潔完整,不得折疊、破壞或塗改應考證號碼及條碼,亦不得書寫考生姓名、應考證號碼或與答案無關之任何文字或符號。
- 可否使用計算機請依試題資訊內標註為準,如「可以」使用,廠牌、功能不拘,唯不得攜帶具有通訊、記憶或收發等功能或其他有礙試場安寧、考試公平之各類器材、物品(如鬧鈴、行動電話、電子字典等)入場。
- 試題及答案卷(卡)請務必繳回,未繳回者該科成績以零分計算。
- 試題採雙面列印,考生應注意試題頁數確實作答。
- 違規者依本校招生考試試場規則及違規處理辦法處理。

科目名稱:電磁學【電波聯合碩士班、通訊所碩士班乙組、電機系碩士班戊組】題號:482004 ※本科目依簡章規定「可以」使用計算機(廠牌、功能不拘)(問答申論題) 共2頁第1頁

- 1. (3%) (a) At any point (x_0, y_0, z_0) in the domain of a scalar function V(x, y, z), we take a path a_ℓ along $V = c_i$, where c_i is a constant, or take a path a_n along ∇V . Tell me about the main characteristic (主要特徵) of these two paths a_ℓ and a_n , and also what is $a_\ell \cdot a_n$, the dot product of a_ℓ and a_n ?
 - (3%) (b) () = $\nabla V \cdot (a_\ell) d\ell$, where V is a scalar function, $d\ell$ 為任意方向 a_ℓ 之小路徑。() 裏應填什麼?
 - (3%) (c) 利用 Divergence theorem for $\nabla \cdot \mathbf{E}$ <u>寫下</u> \mathbf{E} 和 \mathbf{Q} (真空中有一 charge \mathbf{Q})的關係。
 - (3%) (d) 利用 Stokes' theorem for ∇×B <u>寫下</u>B和 I(真空中有一 current I) 的關係。
 - (3%) (e) 在運算 Divergence ∇ ·A 或 Curl ∇ × A時 (A 為一向量場) ,我們選擇的體積或面積在<u>大小和形狀</u>各有何限制?
- 2. (5%) Using the *Method of Image*, write down the potential distribution, V(x, y, z), for a point P(x, y, z) in the space, Fig. 1, the dielectric constant of the space is ε_0 . Q is a positive point charge of Q 庫侖 *Coul*.

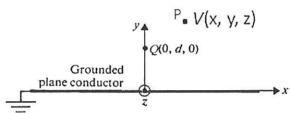


Fig. 1. A point charge Q distance d above the Ground.

- 3. (3%) (a) 在 dielectric constant 為 ε_r (=1+X_e) dielectric 之內部電場為 E (V/m), <u>請問</u>Polarization vector P 為何?
 - (3%) (b) 在 relative permeability 為 μ_r (=1+ X_m)的一 ferromagnetic material 外面線圈通電流,在其內部產生磁場 H (A/m),請問 Magnetization vector M 為何?
 - (4%) 銅的導電性很好,(c) 它的 permittivity ϵ 和 permeability μ <u>各為何</u>?請<u>簡單</u>提供你的<u>理由</u>。
- 4. For a coaxial transmission line shown in Fig. 2, the capacitance per unit length is $c = \frac{2\pi\varepsilon_0}{ln\frac{b}{a}} \left[\frac{F}{m}\right]$, and the

inductance per unit length is $\ell = \frac{\mu_0}{8\pi} + \frac{\mu_0}{2\pi} \ln \frac{b}{a} \left[\frac{H}{m} \right]$. At high frequencies, the internal inductance drops off (that is, approaching 0, and you should know which term is the internal inductance).

- (2%) (a) Find the characteristic impedance of the coaxial line Z_c =(l/c)^{0.5} at high frequencies 請務必寫 Z_c 之單位。
- (2%) (b) 請問在地 (Ground, 即半徑 b 粗體部分) 之外的 magnetic flux density <u>B 值</u>為何?

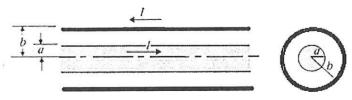


Fig. 2. Coaxial cable side and cross-sectional views, 粗體線代表地 Ground

The capacitance of a line charge of radius a over a ground 0, as shown in Left of Fig. 3 $C = \frac{2\pi\varepsilon_0}{\ln^{\frac{2h}{a}}} \left[\frac{F}{m}\right]$.

- (3%) (c) Find the external inductance L for such a transmission system in air using a quasi-TEM property $L \cdot C = \mu_0 \cdot \varepsilon_0$.
- (3%) (d) Obtain the internal inductance from the inductance formula l, also the external inductance found in c), write down the per unit length internal & external inductance for the conductor system shown in the Right of Fig. 3.

科目名稱:電磁學【電波聯合碩士班、通訊所碩士班乙組、電機系碩士班戊組】題號:482004 ※本科目依簡章規定「可以」使用計算機(廠牌、功能不拘)(問答申論題) 共2頁第2頁

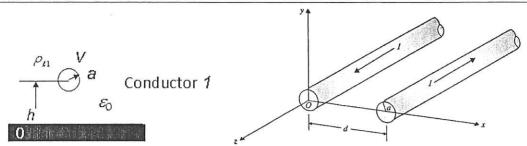
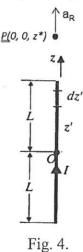
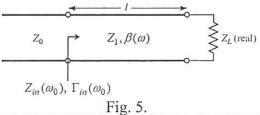




Fig. 3. A single conductor above a Ground (Left); A two-conductor system with currents flow in opposite direction (Right); the two conductors both with radius a and d distance apart.

5. (5%) (a) A position vector $R = a_x(x-x') + a_y(y-y') + a_z(z-z'), R = [(x-x')^2 + (y-y')^2 + (z-z')^2]^{1/2}, a_R = R/R$ where P(x, y, z) is an observation point, and P'(x', y', z') is a source point. Show that $\nabla'(\frac{1}{R}) = (a_R \frac{1}{R^2})$ $\nabla' f$ is the gradient operator with respect to the source coordinates, that is, $\nabla' f = a_x \frac{\partial f}{\partial x'} + a_y \frac{\partial f}{\partial y'} + a_z \frac{\partial f}{\partial z'}$ (5%) (b) As shown in Fig. 4, determine B at $P(0, 0, z^*)$?

- 6. (10%) (a) Derive the electromagnetic wave equation in free space. (5%) (b) Explain the traveling-wave factor.
- 7. A uniform plane wave $(\mathbf{E}_i, \mathbf{H}_i)$ of an angular frequency ω is incident from air (medium 1) on a very large, perfectly conducting wall (medium 2) at an angle of incidence θ_i with perpendicular polarization. Find
 - (10%) (a) E and H in medium 1.
 - (5%) (b) E and H in t medium 2.
 - (5%) (c) the current induced on the wall surface, and
 - (5%) (d) the time-average Poynting vector in medium 1.
- 8. (10%) As shown in Fig. 5 with $Z_1 = \sqrt{Z_0 Z_L}$ and $I = \lambda/4$, please explain how the circuit works to achieve impedance matching between Z_0 at Z_L , and obtain the bandwidth with the maximum Γ of Γ_m .

科目名稱:通訊理論【通訊所碩士班甲組、電波聯合選考:電機系碩士班戊 組、通訊所碩士班乙組】

-作答注意事項-

- 考試開始鈴響前不得翻閱試題,並不得書寫、劃記、作答。請先檢查答案卷(卡)之應考證號碼、桌角號碼、應試科目是否正確,如有不同立即請監試人員處理。
- 答案卷限用藍、黑色筆(含鉛筆)書寫、繪圖或標示,可攜帶橡皮擦、無色透明無文字墊板、尺規、修正液(帶)、手錶(未附計算器者)。每人每節限使用一份答案卷,請衡酌作答(不得另攜帶紙張)。
- 答案卡請以 2B 鉛筆劃記,不可使用修正液(帶)塗改,未使用 2B 鉛筆、劃記太輕或污損致光學閱讀機無法辨識答案者,後果由考生自負。
- 答案卷(卡)應保持清潔完整,不得折疊、破壞或塗改應考證號碼及條碼,亦不得書寫考生姓名、應考證號碼或與答案無關之任何文字或符號。
- 可否使用計算機請依試題資訊內標註為準,如「可以」使用,廠牌、功能不拘,唯不得攜帶具有通訊、記憶或收發等功能或其他有礙試場安寧、考試公平之各類器材、物品(如鬧鈴、行動電話、電子字典等)入場。
- 試題及答案卷(卡)請務必繳回,未繳回者該科成績以零分計算。
- 試題採雙面列印,考生應注意試題頁數確實作答。
- 違規者依本校招生考試試場規則及違規處理辦法處理。

科目名稱:通訊理論【通訊所碩士班甲組、電波聯合選考:電機系碩士班戊組、通訊所碩士班乙 組】題號:437002

共2頁第1頁 ※本科目依簡章規定「可以」使用計算機(廠牌、功能不拘)(問答申論題)

- 1. (10%) Please explain the following concepts as detail as possible:
 - (a) (2%) Describe the conditions for a random process to be wide-sense stationary (WSS).
 - (b) (2%) What is an Ergodic process?
 - (c) (2%) Describe the Wiener-Khinchin Theorem.
 - (d) (2%) What is an Additive White Gaussian Noise?
 - (e) (2%) What is a Gaussian Process?
- 2. (12%) Find the Fourier transform of $x(t) = sinc^3(t)$. (Hint: The answer is a piecewise function which consists of five intervals.)
- 3. (15%) The characteristic function of a random variable X is defined as the statistical average $E(e^{j\nu X}) \equiv \psi(j\nu X) = \int_{-\infty}^{\infty} e^{j\nu x} p(x) dx.$
 - (a) (10%) Find the characteristic function of a Gaussian random variable.
 - (b) (5%) Show that the variable Y, which is defined as the sum of N independent and identically distributed (i.i.d.) Gaussian random variables X_i , i = 1, 2, ..., N, is a Gaussian random variable.
- 4. (10%) An AM signal $s(t) = A_c[1 + k_a m(t)]\cos(2\pi f_c t)$ is considered in the following systems:
 - (a) (5%) If s(t) is used as the input to a square-law detector which has a transfer characteristic defined as $v_0(t) = a_1 v_1(t) + a_2 v_1^2(t)$, where a_1 and a_2 are constants, $v_1(t)$ denotes the input, and $v_0(t)$ denotes the output. Find the conditions for which the message signal m(t) can be recovered from $v_0(t)$.
 - (b) (5%) Let r(t) denote the recovered signal in (a). Suppose that we use an ideal sampling with a sampling interval of T_s to sample r(t) and obtain the sampled signal $r_{\delta}(t)$, please find the Fourier transform of $r_{\delta}(t)$.
- 5. (15%) Please answer the following questions.
 - (a) (5%) For a quaternary communication system, the possible transmitted signals are

$$s_k(t) = A\cos\left(\frac{20\pi}{T}t - \frac{(k-1)}{2}\pi\right), 0 \le t \le T, k = 1, \dots, 4$$

 $s_k(t) = A\cos\left(\frac{20\pi}{T}t - \frac{(k-1)}{2}\pi\right), 0 \le t \le T, k = 1, \dots, 4.$ Assume $T = 40ms, A = 100mV, P(s_k(t)) = \frac{1}{4}, \forall k$, and the noise PSD $S_n(f) = 20 \ \mu\text{W/Hz}$. Please calculate the error probability P_e .

$$\left(Hint: P_e = 2Q\left(\sqrt{\frac{E_s}{N_0}}\right) - Q^2\left(\sqrt{\frac{E_s}{N_0}}\right)\right)$$

- (b) (5%) If T changes to 1ms, in order to maintain the same P_e obtained in (a), please calculate the required amplitude value A.
- (c) (5%) Please show the orthonormal basis functions for the signal constellation $s_k(t)$.

科目名稱:通訊理論【通訊所碩士班甲組、電波聯合選考:電機系碩士班戊組、通訊所碩士班乙組】題號:437002

※本科目依簡章規定「可以」使用計算機(廠牌、功能不拘)(問答申論題) 共2頁第2頁

6. (20%) The definition of entropy is the expected value of the self information:

Let variables X, Y have the joint probability

$$P(X,Y) = \begin{bmatrix} P(x_1, y_1) & P(x_1, y_2) \\ P(x_2, y_1) & P(x_2, y_2) \end{bmatrix} = \begin{bmatrix} 0.54 & 0.06 \\ 0.06 & 0.34 \end{bmatrix}.$$

Please find the following quantities:

- (a) (4%) P(Y|X) and P(X|Y)
- (b) (4%) H(X) and H(Y)
- (c) (6%) Calculate H(X|Y) and describe the physical meaning of H(X|Y).
- (d) (6%) Calculate I(X; Y) and describe the physical meaning of I(X; Y).
- 7. (18%) Consider the encoder for a binary (3,1,2) convolutional code shown in Fig. 1. There are one input message u, two registers and three outputs v_1 , v_2 and v_3 .

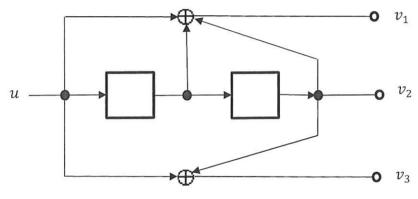


Figure 1

(a) (3%) Find the codeword v corresponding to the information sequence $u = (1 \ 1 \ 1 \ 0 \ 1 \ 0)$.

(b) (5%) Draw the state diagram of this encoder.

(c) (10%) Please use Viterbi algorithm to decode the received sequence (110 010 111 100 101 001), assuming that a binary symmetric channel with a crossover probability p < 1/2 is considered.