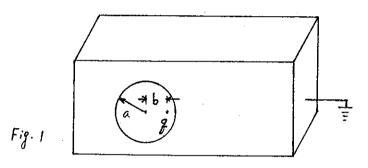
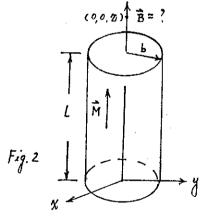
Quantum Mechanics

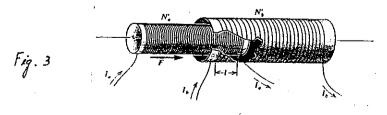
- 1. Consider a particle of mass μ in a potential $V(x) = \begin{cases} \frac{1}{2} \mu \omega^2 x^2, & x > 0 \\ \infty, & x < 0 \end{cases}$
 - (a) What are the boundary conditions on the wave functions? Find the eigenvalues and eigenfunctions. (10%)
 - (b) Two noninteracting boson in this potential, one is in the ground state $|0\rangle$ and the other in the first excited state $|1\rangle$. Show the normalized wave function. (5%)
 - (c) Two noninteracting fermions in this potential, one is in the ground state $|0\rangle$ and the other in the first excited state $|1\rangle$. Show the normalized wave function. (5%)


 Hint: The Hermite polynomials $H_m(y)$ satisfy the differential equation

$$\frac{d^2 H_m(y)}{dy^2} - 2y \frac{dH_m(y)}{dy} + 2mH_m(y) = 0$$


$$H_0(y) = 1, \quad H_1(y) = 2y, \quad H_2(y) = 4y^2 - 2, \quad H_3(y) = 8y^2 - 12y$$

- 2. Find the energy levels of a particle in a spherical box of radius a in the l=0 sector. (20%)
- 3. A particle is moving along the x-axis. Find the probability for transmission of the particle through a delta-function potential barrier at the origin. (20%)
- 4. Suppose we have a particle with spin up along the x-direction at time <u>r</u>=0.
 - (a) Calculate the eigenvector measurement of S_x. (7%)
 - (b) Then, a fixed magnetic field $\bar{B} = B_0 \hat{z}$ is applied to the state. Find the expectation value of S_x for such localized electron later. (7%)
 - (c) At a later time T, the magnetic field is very rapidly rotated to y-direction, i.e., $\vec{B} = B_0 \hat{y}$. After another time interval T, a measurement of S_x is carried out. What is the probability that the value $\hbar/2$ will be found? (6%)
- 5. Describe the differences between the Schrödinger's and Heisenberg's views of Ouantum Mechanics. (10%)
- 6. Write down the Hamiltonian in Quantum Mechanics for a charged particle moving in electromagnetic field. (10%)


1. A spherical cavity of radius a is inside a grounded conductor. A point charge q inside the cavity is located a distance b from the center as shown in Fig. 1. Use the method of image to calculate the maximum and minimum surface charge density of the cavity. (20%)

- 2. Two concentric spherical conductor shells with inner and outer radius of R_1 and R_2 respectively. The inner shell is grounded and the outer shell keeps in a potential of $\Phi(R_2,\theta) = V_o \cos\theta$. Determine the electric potential of an arbitrary point between these two shells. (20%)
- 3. A sphere of radius R carries a charge density $\rho(r) = kr$ (where k is a constant). Find the energy of the configuration (20%)
- A cylindrical material of radius b and length L is uniformly magnetized alone its axis (in the direction of z). Its magnetization is M = Mk. Determine the magnetic field at a point in the axis. (See Fig. 2) (20%)

5. Two long solenoids, with number of turns per unit length of N_a' and N_b' respectively. One of which extends a distance *l* within the other as in Fig. 3. Neglect end effects, calculate the force exerted on each other. (20%)

