國立中山大學 99 學年度博士班招生考試試題

科目:機率論【應數系博士班甲組】

Do all problems in detail. 20 points for each problem.

- 1. Let $\{X_n\}_{n\geq 1}$ be a sequence of independent and identically distributed random variables with $P(X_1=1)=P(X_1=-1)=1/2$. Let $S_n=n^{-1/2}\sum_{i=1}^n X_i$. Find $\lim_{n\to\infty}P(-1< S_n<1)$.
- 2. Let $\{X_n\}_{n\geq 1}$ be a sequence of independent random variables such that for $n\geq 1$, $P(X_n=1)=p_n=1-P(X_n=0),\ 0\leq p_n\leq 1$, and let $Y_n=\sum_{i=1}^n(X_i-p_i)/n$. Show that Y_n converges in probability to 0.
- 3. For any random variable X, a real number c is called a median of X if $P(X < c) \le \frac{1}{2} \le P(X \le c).$ Show that if P(|X| > 1) < 1/2, then any median of X must lie in the interval [-1, 1].
- 4. Let X and Y be independent and identically distributed random variables. If X is exponentially distributed with parameter 1, show that X/(X+Y) and X+Y are independent.
- 5. Let X be a non-negative random variable. Show that

$$\sqrt{1 + (E[X])^2} \le E\sqrt{1 + X^2} \le 1 + EX.$$

每題 20 分,共 5 題,請詳列計算和推導過程書寫於題目下方空白處。

問題	1: 20 分	2: 20 分	3: 20 分	4: 20 分	5: 20 分	總分: 100 分
得分						

1. Let A, B, and C be independent random variables, uniformly distributed on (0,1). What is the probability that $Ax^2 + Bx + C$ has real roots?

- 2. Let $X_1, X_2, ...$ be iid and $X_{(n)} = \max_{1 \le i \le n} X_i$.
 - (a) If X_i is beta $(1, \beta)$, find a value of ν so that $n^{\nu}(1 X_{(n)})$ converges in distribution.
 - (b) If X_i is exponential(1), find a sequence a_n so that $X_{(n)} a_n$ converges in distribution.

3. Let (X_1, \ldots, X_n) be a sample of Bernoulli random variables with $P(X_i = 1) = p \in (0, 1)$. Find the UMVUE of p^m , where m is a positive integer and $m \le n$.

4. Let (X_1, \ldots, X_n) be a random sample from the following discrete distribution:

$$P(X_1 = 1) = \frac{2(1-\theta)}{2-\theta}, \quad P(X_1 = 2) = \frac{\theta}{2-\theta},$$

where $\theta \in (0,1)$ is unknown. Obtain a moment estimator of θ and its asymptotic distribution.

- 5. Suppose that X_1, \ldots, X_n are iid with a beta $(\mu, 1)$ pdf and Y_1, \ldots, Y_m are iid with a beta $(\theta, 1)$ pdf. Also assume that the Xs are independent of the Ys.
 - (a) Find an LRT of $H_0: \theta = \mu$ versus $H_1: \theta \neq \mu$.
 - (b) Show that the test in part (a) can be based on the statistic

$$T = \frac{\sum \log X_i}{\sum \log X_i + \sum \log Y_i}.$$

Department of Applied Mathematics at National Sun Yat-sen University PhD Entrance Exam Analysis Question paper (May 2010)

(Note: This question paper is composed of five (5) questions, each of which carries 20 points, with a total of 100 points. Attempt all of them.)

Question One (20 points)

Let $\{a_n\}_{n=0}^{\infty}$ be a sequence of nonnegative real numbers.

(1.1) If the following condition is satisfied:

$$a_{m+n} \le a_m + a_n \quad m, n \ge 0$$

prove that

$$\lim_{n\to\infty}\frac{a_n}{n}$$
 exists.

(1.2) Suppose that the following condition is satisfied:

$$a_{n+1} \le a_n + \delta_n, \quad n \ge 0,$$

where $\{\delta_n\}$ is a sequence of nonnegative real numbers such that $\sum_{n=0}^{\infty} \delta_n < \infty$. Prove that $\lim_{n\to\infty} a_n$ exists.

Question Two (20 points)

Let

$$f_n(x) = \frac{nx - 1}{(x \log n + 1)(1 + nx^2 \log n)}.$$

Show that

- (2.1) $\lim_{n\to\infty} f_n(x) = 0$, $0 < x \le 1$.
- (2.2) $\lim_{n\to\infty} \int_0^1 f_n(x) dx = \frac{1}{2}$.

Question Three (20 points)

Suppose $f \in L^1(-\infty, +\infty)$ and let

$$F_n(x) = \frac{n}{\pi} \int_{-\infty}^{+\infty} \frac{f(t)dt}{1 + n^2(t - x)^2}.$$

Show that $\lim_{n\to\infty} F_n(x) = f(x)$ if f is continuous at x.

Question Four (20 points)

If f is integrable over a finite closed interval $[a, b + \delta]$ (where $\delta > 0$), then

$$\lim_{h \to 0^+} \int_a^b |f(x+h) - f(x)| dx = 0.$$

Question Five (20 points)

Let (Ω, \mathcal{F}, P) be a probability space. Let f be an integrable function on Ω and let $\{f_n\}$ be a sequence of integrable functions on Ω . Prove that $f_n \to f$ in L^1 , i.e.,

$$\lim_{n \to \infty} \int_{\Omega} |f_n(\omega) - f(\omega)| dP(\omega) = 0$$

if and only if

$$\lim_{n\to\infty}\int_A f_n(\omega)dP(\omega) = \int_A f(\omega)dP(\omega) \quad \text{holds uniformly over } A\in\mathcal{F}.$$