(1) Show that for any r > 1, $E[|\mathbf{X}|^r] < \infty$ if and only if

$$\sum_{n=1}^{\infty} n^{r-1} \mathbf{Pr}(|\mathbf{X}| \ge n) < \infty. \tag{15\%}$$

- (2) Suppose that $X_n \to X$ and $Y_n \to Y$ both in probability. Prove or disprove: $X_n + Y_n \to X + Y$ in probability. (10%)
- (3) Let X be a random variable such that $M_{\mathbf{X}}(t) = E[e^{t\mathbf{X}}]$ is finite for all t. Show that

$$\Pr(\mathbf{X} \ge a) \le e^{-ta} M_{\mathbf{X}}(t), \quad t > 0. \tag{10\%}$$

- (4) Suppose that X and Y are random variables. If X^2 and Y^2 are independent. Are X and Y necessarily independent? (15%)
- (5) Suppose that $\{\mathbf{X}_n\}$ converges in distribution to \mathbf{X} . For each $p \geq 1$, prove or disprove: $E[|\mathbf{X}_n|^p] \to E[|\mathbf{X}|^p]$. (15%)
- (6) Let \mathbf{X}_n , n = 1, 2, ..., be i.i.d. random variables with $\mathbf{Pr}(X_1 = n) = \mathbf{Pr}(X_1 = -n) = c(n^2 \log n)^{-1}$, n = 3, 4, ..., where $c = [2\sum_{n=3}^{\infty}(n^2 \log n)^{-1}]^{-1}$. Let $S_n = \mathbf{X}_1 + \mathbf{X}_2 + \cdots + \mathbf{X}_n$. Does $S_n/n \to 0$ in probability? Does $S_n/n \to 0$ almost surely? (20%)
- (7) Let $1 \leq p < \infty$, $\mathbf{X}_n \in L^p$, and $\mathbf{X}_n \to \mathbf{X}$ in probability. Show that if $\{|\mathbf{X}_n|^p\}$ is uniformly integrable then $\mathbf{X}_n \to \mathbf{X}$ in L^p . (15%)

科目:數理統計【應數系甲組】

共/頁第/頁

共五題,每題20分。答題時,每題都必須寫下題號與詳細步驟。 請依題號順序作答,不會作答題目請寫下題號並留空白。

1. Let X and Y be independent N(0,1) random variables, and define a new random variable Z by

$$Z = \begin{cases} X & \text{if } XY > 0, \\ -X & \text{if } XY < 0. \end{cases}$$

- (a) Show that Z has a normal distribution.
- (b) Show that the joint distribution of Z and Y is not bivariate normal.
- 2. Let X_1, \ldots, X_n be a random sample from the pdf

$$f(x|\mu,\sigma) = \frac{1}{\sigma}e^{-(x-\mu)/\sigma}, \quad \mu < x < \infty, \ 0 < \sigma < \infty.$$

Find a two-dimensional sufficient statistic for (μ, σ) .

3. Let X_1, \ldots, X_n be iid with pdf

$$f(x|\theta) = \frac{1}{\theta}, \quad 0 \le x \le \theta, \ \theta > 0.$$

Estimate θ using both the method of moments and maximum likelihood. Calculate the means and variances of the two estimators. Which one should be preferred and why?

- 4. Suppose that we have two independent random samples: X_1, \ldots, X_n are exponential (θ) , and Y_1, \ldots, Y_m are exponential (μ) .
 - (a) Find the likelihood ratio test (LRT) of $H_0: \theta = \mu$ versus $H_1: \theta \neq \mu$.
 - (b) Show that the test in part (a) can be based on the statistic

$$T = \frac{\sum X_i}{\sum X_i + \sum Y_i}.$$

- (c) Find the distribution of T when H_0 is true.
- 5. (a) Find the $1-\alpha$ confidence set for a that is obtained by inverting the LRT of $H_0: a=a_0$ versus $H_1: a\neq a_0$ based on a sample X_1,\ldots,X_n from a $N(\theta,a\theta)$ family, where θ is unknown.
 - (b) A similar question can be asked about the related family, the $N(\theta, a\theta^2)$ family, If X_1, \ldots, X_n are iid $N(\theta, a\theta^2)$, where θ is unknown, find the 1α confidence set based on inverting the LRT of $H_0: a = a_0$ versus $H_1: a \neq a_0$.

科目:數值分析[應數系乙組]

共之頁第1頁

Entrance Exam for the Ph.D Program of Scientific Computing Six questions with the marks indicated.

- 1. (10) For numerical methods, take one kind of numerical methods,
- (a) Give the definitions of convergence and stability, (b) What are the differences between convergence and stability.
 - 2. (10) Prove the Schwarz inequality:

$$|\sum_{i=1}^{n} x_i y_i| = \sqrt{\sum_{i=1}^{n} x_i^2} \sqrt{\sum_{i=1}^{n} y_i^2}.$$

Note that you can not use the formula: $(x,y) = ||x|| ||y|| \cos(x,y)$ to prove the Schwarz inequality.

- 3. (15) To seek a root of x = F(x), choose the substitution iteration: $x_{k+1} = F(x_k)$, k = 0, 1, ... Suppose that |F'(x)| < 1. (a) To prove the solution existence. (b) To derive the error bounds.
 - 4. (15) Consider the initial value problem of ordinary differential equations (ODEs),

$$y'=f(x,y), x \geq 0; y(0)=y_0.$$

Give the midpoint scheme, derive the local errors and provide stability analysis.

- 5. (15) Choose the central and the trapezoidal rules to evaluate the integral $\int_a^b f(x)dx$. Suppose that f''(x) exists and $f''(x) \geq 0$ (or $f''(x) \geq 0$). Prove that the numerical values by the central and the trapezoidal rules are just the upper and lower bounds.
- 6. (35) Solve the linear algebraic equations Ax = b, where the matrix $A \in \mathbb{R}^{n \times n}$ and vectors $x \in \mathbb{R}^n$ and $b \in \mathbb{R}^n$. For the perturbation equations $A(x + \Delta x) = b + \Delta b$, where $\Delta b \in \mathbb{R}^n$ and $\Delta x \in \mathbb{R}^n$.
- (a) To prove the bound,

$$\frac{\|\Delta x\|}{\|x\|} \leq Cond \times \frac{\|\Delta b\|}{\|b\|},$$

where

$$Cond = \frac{\sigma_{max}}{\sigma_{min}}$$

- Continued -

i

科目:數值分析【應數系乙組】

共 2 頁第 2 頁

(b) To prove the bound,

$$\frac{\|\Delta x\|}{\|x\|} \leq Cond_{eff} \times \frac{\|\Delta b\|}{\|b\|},$$

where

$$Cond_{eff} = \frac{\|b\|}{\sigma_{min}\|x\|}.$$

In the above equations, ||x|| is the 2- norm, and σ_{max} and σ_{min} are the maximal and the minimal singular values of matrix A_j respectively.

-- end

Answer all of the following questions. Each carries 20 points.

- 1. (a) Prove that every convex function $f:[0,1] \longrightarrow \mathbb{R}$ attains its maximum value at either 0 or 1.
 - (b) Prove that every convex function $f:[0,1] \longrightarrow \mathbb{R}$ is continuous on (0,1). What can you say about the continuity of f at the endpoints 0 and 1?
- 2. (a) Let f be a positive measurable function defined on \mathbb{R} . Show that there is a sequence $\{f_n\}_n$ of simple functions such that $f_n(x)$ monotonically increases to f(x) everywhere.
 - (b) Let f be a monotone (increasing or decreasing) real-valued function defined on [a, b]. Prove that f is continuous everywhere on [a, b] except possibly for at most countably many points.
- 3. (Baire Category Theorem) Let X be a complete metric space and $\{X_n : n \in \mathbb{N}\}$ be a countable collection of closed subsets of X such that $X = \bigcup_n X_n$. Prove that at least one of X_n 's has non-empty interior.
- 4. An extended real valued function $f: \mathbb{R} \longrightarrow [-\infty, +\infty]$ is said to be lower semi-continuous at the point y if $f(y) \neq -\infty$ and $f(y) \leq \liminf_{x \to y} f(x)$. Show the following statements.
 - (a) Let f(y) be finite. Then f is lower semicontinuous at y if and only if given $\epsilon > 0$, there is a $\delta > 0$ such that $f(y) \leq f(x) + \epsilon$ for all x with $|x y| < \delta$.
 - (b) A real valued function f is lower semicontinuous on (a, b) if and only if the set $\{x \in \mathbb{R} : f(x) > \lambda\}$ is open for each real number λ .
 - (c) A lower semicontinuous real valued function f defined on [a, b] bounded from below assumes its minimum on [a, b].
 - (d) (Dini Theorem) Let $\{f_n\}_n$ be a sequence of lower semicontinuous functions defined on [a, b]. Suppose $f_n(x)$ monotonically increasing to 0 for all x in [a, b]. Then f_n converges to zero uniformly on [a, b].

科目:分析【應數系丙組選考】

共2頁第2頁

5. Let I = [0, 1] and $Q = I \times I$. Define $f: Q \longrightarrow \mathbb{R}$ by

$$f(x,y) = \begin{cases} \frac{1}{p} & \text{if } y \text{ is rational and } x = \frac{q}{p}, p, q \in \mathbb{N} \text{ such that} \\ & \text{the greatest common factor } (p,q) \text{ of } p \text{ and } q \text{ is } 1, \\ 0 & \text{otherwise.} \end{cases}$$

- (a) Is f integrable over Q? If yes, compute $\int_Q f$.
- (b) For each fixed x, compute the lower Riemann integral $\underline{\int}_{y\in I} f(x,y)$ and the upper Riemann integral $\overline{\int}_{y\in I} f(x,y)$.
- (c) Show that $\int_{y\in I} f(x,y)$ exists for x in I-D, where D is a set of measure zero in I.
- (d) Verify Fubini's theorem for $\int_Q f$.

End of Paper