科目:機率論 【應數系甲組】

共 頁第 頁

20 points for each problem

- 1. Assume the number of accidents occurred yearly in a certain highway follows the Poisson distribution with a random parameter Λ which has the distribution function $\Gamma(a,\mu),\ a,\ \mu>0.$
 - (i) Find the unconditional distribution of X.
 - (ii) Find the conditional distribution of Λ for given X.
- 2. Let X_1, \ldots, X_n be independent and identically distributed (i.i.d.) with common distribution function (c.d.f.) F, F(0) = 0. Let $Z = (X_1 X_2 \ldots X_n)^{1/n}$ be the geometric average of the $X'_k s$.
 - (i) Find the expression of the characteristic function (ch.f.) of $Y_k = \log X_k$, and the exact form of the ch.f. of Y_k when X_k is uniformly distributed on (0,1).
 - (ii) Find the ch.f. of -2n Z and the corresponding distribution function.
- 3. Consider the random variable Y which has negative binomial distribution with probability mass function

$$f(y;k,\mu) = \frac{\Gamma(y+k)}{\Gamma(k)\Gamma(y+1)} \left(\frac{k}{\mu+k}\right)^k \left(1 - \frac{k}{\mu+k}\right)^y,$$

 $k \ge 1, y = 0, 1, 2, \ldots$, where k and μ are parameters.

- (i) Find the expectation and variance of Y, i.e. E(Y) and Var(Y) in terms of k and μ .
- (ii) Determine the limiting distribution of Y when $k \to \infty$.
- 4. Let $\{X_n, n \geq 1\}$ be a sequence of random variables defined on a probability space (Ω, \mathcal{F}, P) . Also let F_n, f_n denote the c.d.f. and p.d.f. of X_n respectively.
 - (i) State the definition that $\{X_n, n \geq 1\}$ converges in distribution to a random variable X.
 - (ii) For $\forall n \geq 1$, let

$$f_n(x) = \begin{cases} 1/2 & \text{, if } x = 1 - 1/n \text{ or } 1 + 1/n, \\ 0 & \text{, otherwise.} \end{cases}$$

Is $\{X_n, n \geq 1\}$ convergent to a random variable X when $n \to \infty$? If it is, what is the distribution of X?

- (iii) Is f_n convergent to a p.d.f when $n \to \infty$? If it is, what is it?
- 5. Let $\{X_n, n \geq 1\}$ be a sequence of random variables defined on a probability space (Ω, \mathcal{F}, P) . Assume for all $n \geq 1$, $E(X_n) = \mu$, $Var(X_n) = \sigma_n^2 \leq b$, where b > 0 is a constant.
 - (i) State the definition that $\{X_n, n \geq 1\}$ converges in probability to a random variable X.
 - (ii) Show that $\overline{X}_n = \sum_{i=1}^n X_i/n$ converges in probability to μ when $n \to \infty$, under the condition that

$$\lim_{|i-j|\to\infty} \operatorname{Cov}(X_i, X_j) = 0.$$

科目: 數理統計 【應數系甲組】

共 / 頁 第 / 頁

共五題每題20分。答題時,每題都必須寫下題號與詳細步驟。

- 1. Suppose X_1, X_2, \ldots are jointly continuous and independent, each distributed with marginal pdf f(x), where each X_i represents annual rainfall at a given location.
 - (a) Find the distribution of the number of years until the first year's rainfall, X_1 , is exceeded for the first time.
 - (b) Show that the mean number of years until X_1 is exceeded for the first is infinite.
- 2. Let X_1, \ldots, X_{n+1} be iid Bernoulli(p), and define the function h(p) by

$$h(p) = P\left(\left.\sum_{i=1}^{n} X_i > X_{n+1}\right| p\right),\,$$

the probability that the first n observations exceed the (n+1)st.

(a) Show that

$$T(X_1,\ldots,X_{n+1}) = \begin{cases} 1 & \text{if } \sum_{i=1}^n X_i > X_{n+1} \\ 0 & \text{otherwise} \end{cases}$$

is an unbiased estimator of h(p).

- (b) Find the best unbiased estimator of h(p).
- 3. Suppose that when the radius of a circle is measured, an error is made that has a $N(0, \sigma^2)$ distribution. If n independent measurements are made, find an unbiased estimator of the area of the circle. Is it best unbiased?
- 4. Derive the likelihood ratio test of $H_0: \mu = \mu_0$ vs. $H_0: \mu \neq \mu_0$ in the case of the parameter μ of the Poisson distribution. Express the test in an equivalent form involving \bar{X} .
- 5. Derive a general two-dimensional confidence region for the vector parameter $\theta = (\mu, \sigma^2)$ in the $N(\mu, \sigma^2)$ distribution. Plot the confidence region.

科目:數值分析 【應數系乙組】

共 1 頁第 1 頁

Entrance Exam for the Ph.D Program of Scientific Computing

Six questions with the marks indicated.

- 1. (15) Describe convergence and stability for numerical methods, give relations between them, and provide examples to explain your answers.
 - 2. (15) Suppose that there exists a root of f(x) = 0, and $0 < m \le f'(x) \le M$. Prove that

$$x_{n+1} = x_n - \lambda f(x_n)$$

yields the convergent sequence $\{x_n\}$ to the root for arbitrary $x_0 \in (-\infty, \infty)$ and $0 < \lambda < 2/M$.

3. 15) Let

$$A \in R^{n \times n}$$
, $Cond.(A) = \{\frac{\lambda_{max}(A^T A)}{\lambda_{min}(A^T A)}\}^{1/2}$,

where $\lambda_{max}(A)$ and $\lambda_{min}(A)$ are the maximal and the minimal eigenvalues of matrix A, respectively. Prove

- (1). $Cond.(AB) \leq Cond.(A)Cond.(B)$,
- (2) Cond.(UA) = Cond(A), where $U \in \mathbb{R}^{n \times n}$ is an orthogonal matrix.
- 4. (15) Describe the singular value decomposition for the matrix $A \in \mathbb{R}^{m \times n}$, $m \ge n$, and prove that the singular values are non-negative.
 - 5. (20) Derive the error bounds for the trapezoidal rule in two dimensions:

$$\int_0^h \int_0^k g(x,y)dxdy \approx \frac{hk}{4}(g(0,0) + g(h,0) + g(0,k) + g(h,k)),$$

where the function g is smooth enough.

6. (20) Consider the system of ordinary differential equations,

$$\frac{d\vec{u}}{dt} + A\vec{u} = \vec{f},$$

where \vec{f} is known and $\vec{u}(0)$ is given. The matrix A is symmetric and positive definite. Provide truncation errors, and derive stability analysis for the following scheme:

$$\frac{w^{n+1}-w^n}{\Delta t}+\frac{1}{2}A\{w^{n+1}+w^n\}=\bar{f}^{n+\frac{1}{2}}, \quad n\geq 0,$$

where w^n is used to approximate \vec{u} at $n\Delta t$.

In the following, \mathbb{R}^k denotes the Euclidean space of dimension k > 0, and write $\mathbb{R}^1 = \mathbb{R}$. For any given Lebesgue measurable subset E of \mathbb{R}^k , let m(E) denote its Lebesgue measure.

1. Let I = [0, 1], and let $f: I \longrightarrow \mathbb{R}$ be the function defined by

$$f(x) = \begin{cases} \frac{1}{n} & \text{whenever } 2^{-n} < x \le 2^{-n+1} \text{ and } n > 0 \text{ is an integer,} \\ 0 & \text{whenever } x = 0. \end{cases}$$

Prove that f is Riemann integrable on I, and that $\int_0^1 f(x) dx = \ln 2$, where $\ln d$ denotes the natural logarithmic function. (20 %)

2. Let I be an open interval in \mathbb{R} , and let $f:I\longrightarrow \mathbb{R}$ be a continuous function. Assume that

$$f(\frac{x+y}{2}) \le \frac{f(x)+f(y)}{2}$$
 for all $x, y \in I$.

Prove that $f((1-t)x+ty) \le (1-t)f(x)+tf(y)$ for all real numbers t with 0 < t < 1 and for all $x, y \in I$.

- 3. Let D be a nonempty subset of \mathbb{R}^k , and let $f: D \longrightarrow \mathbb{R}$ be a function. Assume that for every $r \in \mathbb{R}$ there is an open set $U_r \subset \mathbb{R}^k$ such that $U_r \cap D = \{x \in D : f(x) < r\}$.
 - (a) Prove that if $\{x_n\}_{n=1}^{\infty}$ is a convergent sequence in D with $\lim_{n\to\infty} x_n = x \in D$, then $\limsup_{n\to\infty} f(x_n) \leq f(x)$. (10 %)
 - (b) Prove that if D is compact, then there exists $x_0 \in D$ such that $f(x_0) \ge f(x)$ for all $x \in D$. (10 %)
- **4.** Let $I = \{x \in \mathbb{R} : 0 \le x \le 1\}$, and let $f : \mathbb{R}^2 \longrightarrow \mathbb{R}$ be a function such that
 - (i) the first partial derivative $\frac{\partial f}{\partial x}$ exists and is bounded on $\mathbb{R} \times I \subset \mathbb{R}^2$, and
 - (ii) for every $x \in \mathbb{R}$ the function $y \longmapsto f(x, y)$ is Lebesgue integrable on I.

Prove that for every $x \in \mathbb{R}$ the function $y \mapsto \frac{\partial f}{\partial x}(x, y)$ is Lebesgue measurable on I, and that $\frac{d}{dx} \int_0^1 f(x, y) \, dy = \int_0^1 \frac{\partial f}{\partial x}(x, y) \, dy$ for $x \in \mathbb{R}$. (20 %)

5. For every integer n > 0, let $f_n : \Omega \longrightarrow \mathbb{R}$ be a Lebesgue measurable function, where Ω is a Lebesgue measurable subset of \mathbb{R}^k with $m(\Omega) < \infty$. Assume that for every $x \in \Omega$ there is a real number $\rho_x > 0$ such that $|f_n(x)| \le \rho_x$ for all n. Prove that for any given $\varepsilon > 0$ there exist a real number $\rho > 0$ and a closed subset E of \mathbb{R}^k such that $E \subset \Omega$, $m(\Omega - E) < \varepsilon$ and $|f_n(x)| \le \rho$ for all integers n > 0 and all $x \in E$, where $\Omega - E = \{x : x \in \Omega \text{ and } x \notin E\}$.

科目:組合數學 【應數系丙組選考】

共/頁第 頁

Qualifying Examination in Graph Theory

- 1. (10 points) Let G be a 2k-connected graph. Suppose e_1, e_2, \dots, e_k are vertex disjoint edges of G and v is a vertex of G. Prove that G has k cycles C_1, C_2, \dots, C_k such that C_i contains v and e_i , and moreover for $i \neq j$, C_i and C_j are vertex disjoint except that they both contain v.
- 2. (16 points) A graph G is k-choosable if for any mapping L which assigns to each vertex v of G a set L(v) of k colours, there is a proper colouring c of G with $c(v) \in L(v)$ for every $v \in V(G)$. Prove that the complete k-partite graph $K_{2,2,\cdots,2}$ with each partite set of cardinality 2 is k-choosable.
- 4. (16 points) Suppose G is a cubic graph and has a 3-edge coloring f with colours 1,2,3. Prove that for any vertex set $X\subseteq V(G)$, for any $i\in\{1,2,3\},\,|E[X,\bar{X}]\cap (f^{-1}(i)|$ has the same parity as $|E[X,\bar{X}]|$.
- 5. (16 points) Prove that a graph G has a nowhere zero k-flow if and only if there is an orientation of G such that for any subset X of V(G), at least 1/k of the edges in $E[X, \bar{X}]$ are directed from X to \bar{X} .
- 6. (16 points) A homomorphism of a graph G to a graph H is a mapping f: $V(G) \to V(H)$ such that $f(x)f(y) \in E(H)$ whenever $xy \in E(G)$. Suppose there is a homomorphism of an n-vertex graph G to H and H is vertex transitive. Prove that $\alpha(G)/|V(G)| \ge \alpha(H)/|V(H)|$.
- 7. (16 points) Suppose $\chi(G) = k$ and any proper induced subgraph has chromatic number at most k-1. Show that G is (k-1)-edge connected.
- 8. (10 points) Prove that if G is a planar graph with n vertices, n+k edges, then G has a cycle of length at most 2(n+k)/(k+2).