國立中山大學95學年度博士班招生考試試題

科目:機率論【應數系甲組】

共/頁第/頁

- (1) Let X_1, \ldots, X_n be independent and identically distributed (iid) with continuous probability density function (p.d.f.) f(x) and cumulative distribution function (C.D.F.) F(x). Let $X_{(1)} \leq X_{(2)} \leq \cdots \leq X_{(n)}$ be the order statistics of $\{X_i, 1 \leq i \leq n\}$. (15pts)
 - (i) Find the joint p.d.f. of $(F(X_{(1)}), \dots, F(X_{(n)})$.
 - (ii) Find $\forall 2 \le k \le n$,

$$P(F(X_{(k)}) - F(X_{(k-1)}) > t), \forall 0 \le t \le 1.$$

- (2) Let X_1, X_2, \dots, X_n be iid $\chi^2(1)$ random variables. Let $Z_n = (S_n - n)/\sqrt{2n}$, where $S_n = \sum_{k=1}^n X_k$. Use Taylor's approximation of the moment generating function of Z_n to find the asymptotic distribution of Z_n . (15pts)
- (3) Let U, V be two r.v.'s, where U has Rayleigh distribution with p.d.f.

$$f_U(u) = \begin{cases} \sigma^{-2} u e^{-u^2/2\sigma^2} &, u \ge 0, \\ 0 &, u < 0, \end{cases}$$

and V is uniformly distributed with $\mathcal{U}(-\pi,\pi)$ distribution. Prove that $X=U\cos V$ and $Y=U\sin V$ are two-independent r.v.'s, and find their distributions. (20pts)

- (4) Let X_1, X_2, \cdots , be iid random variables with common distribution. Show that $n^{-1}S_n$ converges to a finite constant μ almost surely, if and only if $E|X| < \infty$ and $\mu = E(X).(20\text{pts})$
- (5) Let Z be a r.v. with continuous p.d.f. f, where $f(z) > 0, \forall z \in R$. Find P(Z > 0 | |Z| = y), y > 0.(15 pts)
- (6) Let X_1, X_2, \cdots be iid N(0,1) random variables. Determine the limiting distribution of the random variable (15pts)

$$W_n = \sqrt{n} \frac{X_1 + X_2 + \dots + X_n}{X_1^2 + X_2^2 + \dots + X_n^2}.$$

國立中山大學95學年度博士班招生考試試題

科目:數理統計 [應數系甲組]

共/頁第/頁

共五題每題20分。答題時,每題都必須寫下題號與詳細步驟。

1. Let (X_1, \ldots, X_n) have a multinomial distribution with m trials and cell probabilities p_1, \ldots, p_n . Show that, for every i and j,

$$X_i|X_j = x_j \sim ext{binomial}\left(m - x_j, rac{p_i}{1 - p_j}
ight)$$
 $X_j \sim ext{binomial}(m, p_j)$

and that $Cov(X_i, Y_j) = -mp_i p_j$.

- 2. If X has pdf $f_X(x)$ and Y, independent of X, has pdf $f_Y(y)$, establish formulas for the pdf of the random variable Z in each of the following situations.
 - (a) Z = X Y
 - (b) Z = XY
- 3. Let X_1, \ldots, X_n be iid Poisson (λ) , and let λ have a gamma (α, β) distribution.
 - (a) Find the posterior distribution of λ .
 - (b) Calculate the posterior mean and variance.
- 4. Let $f(x|\theta)$ be the logistic location pdf

$$f(x|\theta) = \frac{e^{(x-\theta)}}{(1+e^{(x-\theta)})^2}, \quad -\infty < x < \infty, \quad -\infty < \theta < \infty.$$

- (a) Show that this family has an MLR.
- (b) Based on one observation, X, find the most powerful size α test of $H_0: \theta = 0$ versus $H_1: \theta = 1$. For $\alpha = .2$, find the size of the Type II Error.
- 5. Find a $1-\alpha$ confidence interval for θ , given X_1,\ldots,X_n iid with pdf
 - (a) $f(x|\theta) = 1$, $\theta \frac{1}{2} < x < \theta + \frac{1}{2}$.
 - (b) $f(x|\theta) = 2x/\theta^2$, $0 < x < \theta, \theta > 0$.

科目:分析【應數系丙組選考】

共 | 頁第 | 頁

Throughout the exam, m(E), $E \subseteq \mathbb{R}$ denotes the Lebesgue measure of E, and $\int_E f$ means the Lebesgue integral of f.

- 1. Let $f: \mathbb{R} \to \mathbb{R}$ be continuous. Show that f is an open mapping if and only if f is monotonic. (15pt)
- **2.** Let $\varphi:[0,1]\to\mathbb{R}$. Show that $\varphi\in L^{\infty}[0,1]$ if and only if $\varphi f\in L^1[0,1]$ for all $f\in L^1[0,1]$. (15pt)(Hint: For the "if" part, deny!)
- **3.** A sequence $\{f_n\}$ of measurable functions is said to converge to f in measure on $E\subseteq\mathbb{R}$ if

$$\lim_{n\to\infty} m\{x\in E: |f_n(x)-f(x)|\geq \varepsilon\}=0 \text{ for every } \varepsilon>0.$$

Now let $\{f_n\}$ be a sequence of measurable functions on [0,1] such that

$$\int_0^1 |f_n|^{\alpha} \longrightarrow 0$$

as $n \to \infty$ for some $\alpha > 0$. Show that $f_n \to 0$ in measure. (15pt)

4. We say that $\{f_k: f_k: [0,1] \to \mathbb{R}_0^+, \forall k\}$ is uniformly integrable (UI) if

$$\lim_{n\to\infty}\sup_{k\in\mathbb{N}}\int_0^1f_k\mathbf{1}_{\{f_k>n\}}=0,$$

where $\mathbf{1}_E$ is the characteristic function on E. Show that

- a. $\sup_k \int_0^1 f_k < \infty$ and $\lim_{n \to \infty} \sup_k m\{f_k > n\} = 0$ if $\{f_k\}$ is UI
- b. The UI property is closed under addition.
- c. If $f_k \to f$ a.e. and $\{|f_k|\}$ is UI, then $\lim_{k \to \infty} \int_0^1 f_k = \int_0^1 f$ and $\lim_{k \to \infty} \int_0^1 |f_k f| = 0$.
- d. If $|f_k| \leq g$ a.e. for some $g \in L^1$ then $\{f_k\}$ is UI.
- e. Is the converse of (d) true? (20pt)
- 5. A function f on $E \subseteq \mathbb{R}$ is said to satisfy the Lipchitz condition with exponent γ if

$$|f(x)-f(y)| \leq C|x-y|^{\gamma}, \ x,y \in E$$

for some C > 0. Let ϕ be the Cantor-Lebesgue function on [0, 1].

- a. Show that ϕ can be approximated by a sequence of functions $\{f_n\}$ satisfying the Lipschitz condition with exponent $\gamma = \log 2/\log 3$.
- b. Show that ϕ satisfies the Lipchitz condition with exponent $\gamma = \log 2/\log 3$. (20pt)
- **6.** Let f be an entire function on \mathbb{C} . Show that either f is constant or $f(\mathbb{C})$ is dense in \mathbb{C} . (Hint: Assume that f is not a polynomial. Now consider g(z) = f(1/z) and use the Casoratti-Weierstrass theorem: If z_0 is an essential singularity of an analytic function g, then $g(\{z: |z-z_0| < \varepsilon, \ z \neq z_0\})$ is dense for all $\varepsilon > 0$) (15pt).

國立中山大學95學年度博士班招生考試試題

科目:組合數學【應數系丙組選考】

共/頁第/頁

1 (14 points). Suppose G is a 2-connected graph which is not a triangle. Prove that for any edge e of G, G - e is 2-connected or G/e is 2-connected. (Here G/e is the graph obtained from G by contracting edge e.)

2 (14 points). Suppose G = (V, E) is a simple graph, and that for every subset A of V we have $|N(A)| \ge |A|$, where $N(A) = \{y \in V : \exists x \in A, (x, y) \in E\}$. Prove there is a multi-subset E' of E (i.e., an element of E can occur more than once in E') such that each vertex of G is incident to exactly two edges of E' (one edge occurring twice in E' is counted as two edges).

3 (14 points). Suppose P is a partial ordered set. A chain of P is a set C of elements such that any two elements of C are comparable. A antichain of P is a set B of elements such that any two elements of B are not comparable. Prove that if the maximum antichain of P has cardinality k then P can be decomposed into the union of k chains.

4 (14 points). Suppose G is a connected graph of maximum degree $k \geq 3$ on $n \geq k+2$ vertices. Prove that $\alpha(G)\lceil n/k \rceil$, here (and in Problem 6) $\alpha(G)$ is the cardinality of a maximum independent set of G.

5 (14 points). Let A_1, A_2, \dots, A_n be n subsets of $\{1, 2, \dots, n\}$. Prove that there is an element $i \in \{1, 2, \dots, n\}$ such that for any $j \neq j'$, $A_j - \{i\} \neq A_{j'} - \{i\}$.

6 (15 points). A homomorphism from a graph G to a graph G' is a mapping $f:V(G)\to V(G')$ such that $f(x)f(y)\in E(G')$ whenever $xy\in E(G)$. Prove that if there is a homomorphism from G to G' and G' is vertex transitive then $\alpha(G)\geq \alpha(G')|V(G)|/|V(G')|$.

7 (15 points). Suppose G is a triangle free planar graph. Prove that there is a homomorphism from G to a triangle free planar graph H in which each facial cycle has length at least 5.