科目: 數理統計 [應數系甲組]

共/頁第/頁

共九題,第六題20分,其餘每題10分。答題時,每題都必須寫下題號與詳細步驟。

1. Show that if X is a continuous random variable, then

$$\min E|X - a| = E|X - m|,$$

where m is the median of X.

- 2. Let X be a random variable with moment-generating function $M_X(t)$, -h < t < h. Prove that $P(X \ge a) \le e^{-at} M_X(t)$, 0 < t < h.
- 3. Find the pdf of $\prod_{i=1}^{n} X_i$, where the X_i s are independent uniform (0,1) random variables.
- 4. Let X_1, \ldots, X_n be a random sample from a population with a pdf

$$f_X(x) = \begin{cases} 1/\theta & 0 < x < \theta \\ 0 & \text{otherwise} \end{cases}$$

Let $X_{(1)} < \cdots < X_{(n)}$ be the order statistics. Show that $X_{(1)}/X_{(n)}$ and $X_{(n)}$ are independent random variables.

- 5. Let X_1, \ldots, X_n be iid $N(\mu, \sigma^2)$. Find a function of S^2 , the sample variance, say $g(S^2)$, that satisfies $E[g(S^2)] = \sigma$.
- 6. Let X_1,\dots,X_n be a random sample from the pdf $f(x|\mu)=e^{-(x-\mu)},$ where $-\infty<\mu< x<\infty.$
 - (a) Show that $X_{(1)} = \min_i X_i$ is complete sufficient statistic.
 - (b) Use Basu's Theorem to show that $X_{(1)}$ and S^2 are independent.
- 7. Let X_1, \ldots, X_n be a sample from the inverse Gaussian pdf,

$$f(x|\mu,\lambda) = \left(\frac{\lambda}{2\pi x^3}\right)^{1/2} \exp\{-\lambda(x-\mu)^2/(2\mu^2 x)\}, \quad x > 0$$

Find the MLEs of μ and λ .

- 8. Suppose that we have two independent random samples: X_1, \ldots, X_n are exponential (θ) , and Y_1, \ldots, Y_m are exponential (μ) . Find the LRT of $H_0: \theta = \mu$ versus $H_1: \theta \neq \mu$.
- 9. Derive a confidence interval of p for a random sample X_1, \ldots, X_n from Bernoulli(p) by inverting the LRT of $H_0: p = p_0$ versus $H_1: p \neq p_0$.

科目:機率論【應數系甲組】

共/頁第/頁

(20 points for each problem)

- (1) Assume that Y is an L^p random variable, that is E(|Y|^p) < ∞, for some p > 0, and {X_n} is a sequence of random variables such that P(|X_n| ≤ Y) = 1, for all n ≥ 1. Prove that if X_n converges to 0 in probability, then X_n converges to 0 in L^p.
- (2) If E(Z) = 0, $E(Z^2) = v^2$ and $E(Z^4) = k^4 > 0$, then $P(Z \ge 0) \ge \frac{v^4}{4k^4}$.
- (3) Let X_1, X_2, \dots, X_n be independent random variables with common mean 0 and variance $\sigma_k^2, k = 1, 2, \dots, n$, respectively. Prove that for any $\epsilon > 0$

$$P(\max_{1 \le k \le n} |S_k| > \epsilon) \le \sum_{i=1}^n \frac{\sigma_i^2}{\epsilon^2}$$

(4) Let T_{ν} be a t random variable with ν degrees of freedom, with the following density function

$$f_T(t) = \frac{\Gamma(\frac{\nu+1}{2})}{\Gamma(\frac{\nu}{2})} \frac{1}{\sqrt{\nu\pi}(1+t^2/\nu)^{(\nu+1)/2}}, -\infty < t < \infty.$$

Prove that the density function of T_{ν} can be written as as the following mixture of normals:

$$f_{T_{\nu}}(t) = \int_{0}^{\infty} \phi(t\sqrt{x})w(\nu x)dx$$

where $\phi(\cdot)$ is the probability density function of N(0,1), and

$$w(s) = \frac{\sqrt{x}}{\Gamma(\nu/2)2^{\nu/2}} s^{(\nu/2)-1} e^{-s/2}.$$

Verify this formula by direct integration and by conditional probability.

(5) Let $\phi(y)$ be a positive, even, and continuous function on $(-\infty, \infty)$ such that $\phi(y)$ is strictly decreasing on $(0, \infty)$, and $\int_{-\infty}^{\infty} \phi(y) dy = 1$. Consider the following bivariate density function:

$$f(x,y) = \begin{cases} 1 + x/\phi(y), & \text{if } -\phi(y) \le x < 0\\ 1 - x/\phi(y), & \text{if } 0 \le x \le \phi(y)\\ 0 & \text{otherwise.} \end{cases}$$

Let F(x,y) be the corresponding cumulative distribution function,

$$F(x,y) = \int_{-\infty}^{x} \int_{-\infty}^{y} f(s,t)dtds.$$

Show that if $0 < \Delta x < \phi(0)$, then

$$F(\Delta x,0) - F(0,0) \ge \int_0^{\phi^{-1}(\Delta x)} \int_0^{\Delta x} [1 - \frac{s}{\phi(t)}] ds dt \ge \frac{1}{2} \Delta x \phi^{-1}(\Delta x)$$

where ϕ^{-1} is the inverse function of $\phi(y)$ for $0 \le y < \infty$. Also show that $\partial F(x,y)/\partial x$ does not exist at (0,0).

科目:數值分析【應數系乙組】

共 | 頁第 | 頁

Twenty points for each problem. Please write down all the detail of your computation and proof.

- 1. Let γ be a simple root of nonlinear equation f(x)=0 where f(x) is smooth. Apply the Newton method to find γ . Show that this Newton iteration converges quadratically if the initial guess is sufficiently close to γ . What happens if γ is a double root?
- 2. (1) Find the linear polynomial p(x) on [0,1] such that $||p(x) \sqrt[3]{x}||_{\infty} = \sup_{x \in [0,1]} |p(x) \sqrt[3]{x}|$ is minimal.
 - (2) Find the quadratic polynomial q(x) on [-1,1] such that $||q(x)-e^x||_2=(\int_{-1}^1|q(x)-e^x|^2dx)^{\frac{1}{2}}$ is minimal.
- 3. Let A be a rank deficient m × n matrix with m ≥ n. How to use (1) QR with column pivoting, (2) singular value decomposition to obtain the least squares solution of Ax = b? Explain why they work?
- 4. Let T be an $n \times n$ matrix and \mathbf{v} be an n dimensional column vector. Prove that the iterative method $\mathbf{x}^{(k+1)} = T\mathbf{x}^{(k)} + \mathbf{v}$ converges if, and only if, the spectral radius $\rho(T) < 1$. Please provide the detail for all theorems you use in the proof.
- 5. (1) Derive the Euler's method to solve the initial value problem of ODEs

$$\begin{cases} y'(t) = f(t, y(t)), & t \in [a, b] \\ y(a) = y_0 \end{cases}$$

with local truncation error.

(2) Apply the Euler method to solve

$$\begin{cases} y'(t) = \sqrt{y(t)}, & t \in [0, 1] \\ y(0) = 0 \end{cases}$$

and compare the numerical solution to the exact solution. What goes wrong?

科目:分 析 【應數系丙組選考】

共一頁第一頁

- A subset A of a topological space is said to be nowhere dense if the closure of A has empty interior.
 (30%)
 - (a) Show that a set A is nowhere dense if and only if every non-empty open set has a non-empty open subset disjoint from A.
 - (b) Show that a closed set is nowhere dense if and only if its complement is everywhere dense.
 - (c) Show that the boundary of a closed set is nowhere dense.
- 2. Show that a compact metric space is separable. (10%)
- 3. Use residues to find the following integral

(20%)

 $\int_{-\infty}^{\infty} \frac{\cos 2x dx}{x^2 + 2x + 2}$

- 4. Show that for any $m \in N$, the sequence $\{(1+\frac{m}{k})^k : k \in N\}$ is increasing and bounded above. Show that the sequence converges to a real number $\psi(m)$ and show that $\psi(m) = (\psi(1))^m$. (20%)
- 5. Let H be a real Hilbert space and K be a closed convex cone in H. Let $T:K\to H$ and onsider the following two problems:
 - (VI) Find $x \in K$ such that $\langle Tx, y x \rangle \ge 0 \ \forall y \in K$.
 - (CP) Find $x \in K$ such that $\langle Tx, x \rangle = 0$ and $Tx \in K^*$ where $K^* = \{v \in H : \langle v, y \rangle \geq 0 \ \forall y \in K \}$.

Show that x solves (VI) if and only if x solves (CP). (20%)

科目:組合數學 [應數系丙組選考]

- 1. Let O(G) be the set of all orientations of the graph G and $\mathcal{I}(D)$ be the length of a longest directed path in the digraph D. Prove that the chromatic number of G is $\min\{l(D): D \in O(G)\}+1$.
- 2. Suppose G is a bipartite graph with the maximum degree k. Prove that the chromatic index of G is k.
- 3. Suppose G be a graph with n vertices, (n-1)(n-2)/2+2 edges and $n \ge 3$. Prove that G has a Hamiltonian cycle.
- 4. Let $\chi(G,k)$ be the chromatic polynomial of the graph G.

(a) Find $\chi(C_n,k)$ where C_n is a cycle with n vertices.

(10%)

- (b) Let G be an outerplane graph with n vertices and each region of Gbe either a triangle or a Hamiltonian cycle. Determine $\chi(G,k)$. (10%)
- 5. Prove that, for each integer $k \ge 3$, there exists a graph G with the chromatic number at least k and the girth at least 4.