國立中山大學九十二學年度博士班招生考試試題

科目:機率論【應數系甲組】

共/頁第 頁

共五題,每題20分。答題時,每題都必須寫下題號與詳細步驟。

1. Evaluate

$$\lim_{n \to \infty} \frac{1}{(n-1)!} \int_0^n x^{n-1} e^{-x} \, dx.$$

2. Let X_1, \ldots, X_n be random variables, each being normally distributed with mean zero and variance 1. Find the maximum and minimum possible values of the variance of

$$Y = X_1 + \dots + X_n$$

where $n \geq 2$ is fixed.

- 3. A die is rolled until all 6 faces have appeared at least once. Let X be the number of rolls needed. Find E[X] and $E[X^2]$.
- 4. The function

$$\phi(t) = \frac{1}{(1+t^2)(1+2it)^2}$$

is a characteristic function of a probability density function f(x). Find f(x) for all x.

5. Consider a sequence of random numbers and let M denote the first one that is less than its predecessor. That is,

$$M = \min\{n : U_1 \le U_2 \le \dots \le U_{n-1} > U_n\}.$$

Find

- (a) the probability mass function of M.
- (b) the expectation of M.

國立中山大學九十二學年度博士班招生考試試題

科目: 數理統計 【應數系甲組】

共 / 頁第 / 頁

共五題, 毎題20分。答題時, 毎題都必須寫下題號與詳細步驟。

- 1. Show that if $(X,Y) \sim \text{bivariate normal}(\mu_X,\mu_Y,\sigma_X^2,\sigma_Y^2,\rho)$, then the following are true.
 - (a) The marginal distribution of X is $N(\mu_X, \sigma_X^2)$ and the marginal distribution of Y is $N(\mu_Y, \sigma_Y^2)$.
 - (b) The conditional distribution of Y given X = x is

$$N(\mu_Y + \rho(\sigma_Y/\sigma_X)(x - \mu_X), \sigma_X^2(1 - \rho^2)).$$

(c) For any constant a and b, the distribution of aX + bY is

$$N(a\mu_X + b\mu_Y, a^2\sigma_X^2 + b^2\sigma_Y^2 + 2ab\rho\sigma_X\sigma_Y).$$

- 2. Given that N = n, the conditional distribution of Y is χ^2_{2n} . The unconditional distribution of N is Poisson(θ).
 - (a) Calculate E[Y] and Var(Y) (unconditional moments).
 - (b) Show that, as $\theta \to \infty$, $(Y E[Y])/\sqrt{\text{Var}(Y)} \to n(0,1)$ in distribution.
- 3. Let X_1, \ldots, X_n be iid with pdf

$$f(x|\theta) = \theta x^{\theta-1}, \quad 0 \le x \le 1, \quad 0 < \theta < \infty.$$

- (a) Find the MLE of θ , and show that its variance $\to 0$ as $n \to \infty$.
- (b) Find the method of moments estimator of θ .
- 4. Show that for a random sample X_1, \ldots, X_n from a $n(0, \sigma^2)$ population, the most powerful test of $H_0: \sigma = \sigma_0$ versus $H_1: \sigma = \sigma_1$, is given by

$$\phi\left(\sum_{i=1}^{n} X_{i}^{2}\right) = \begin{cases} 1 & \text{if } \sum_{i=1}^{n} X_{i}^{2} > c \\ 0 & \text{if } \sum_{i=1}^{n} X_{i}^{2} \le c. \end{cases}$$

For a given value of α , the size of the Type I Error, show how the value of c is explicitly determined.

- 5. Let X_1, \ldots, X_n be a random sample from a Bernoulli(p).
 - (a) Derive a confidence interval for p by inverting the likelihood ratio test of H_0 : $p = p_0$ versus H_1 : $p \neq p_0$.
 - (b) Show that the interval is a highest density region from $p^{y}(1-p)^{n-y}$.

- Let X be a campact Hausdorff space and C(X) be the space of continuous functions on X. Prove that C(X) is finite dimensional iff X is finite.
- 2. Let (X,d) be a metric space and A,B are subsets of X. We say that A,B are separated if $A \cap clB = clA \cap B = \emptyset$ (clS=closure of S). A set $E \subseteq X$ is connected if E is not the union of two nonempty separated sets.
- a. Prove that disjoint open sets are seperated.
- b. Fix $p \in X$, $\delta > 0$. Show that $A = \{x \in X : d(x, p) < \delta\}$ and $B = \{x \in X : d(x, p) > \delta\}$ are separated.
- c. Prove that every connected metric space with at least two points is uncountable (Hint: use (b)).
- 3. Let X be vector space over \mathbb{R} and K is a convex subset of X. A subset E of K is called an extreme subset of K if (1) E is convex and nonempty and (2) if x = ty + (1-t)z with $x \in E$, $y, z \in K$ and $t \geq 0$, then $y, z \in E$. A point $x \in K$ is an extreme point of K if $E = \{x\}$ is an extreme subset of K. Let $\operatorname{ext}(K) = \operatorname{The}$ set of extreme points of K.
- a. Show that (2) in the definition of extreme set can be replaced by the following statement:

If
$$x = \frac{1}{2}y + \frac{1}{2}z$$
 with $x \in E$, $y, z \in K$, then $y, z \in E$.

- b. Show that if E is an extreme subset of K and F is an extreme subset of E, then F is an extreme subset of K.
- c. Let $l: X \longrightarrow \mathbb{R}$ be linear and K_{\max} and K_{\min} be subsets of K where l achieves its maximum and minimum on K, respectively. Show that, when nonempty, K_{\max} and K_{\min} are extreme subsets of K.
- d. Use (c) to prove the Carathéodory theorem:

Let $K \neq \emptyset$ be a compact convex subset of \mathbb{R}^n , then $\operatorname{ext}(K) \neq \emptyset$ and every point of K can be written as a convex combination of some n+1 extreme points of K (Hint: use induction on n).

- **4.** What can you say about an entire function f whose range is inside the set $\{(x,y): |x|+|y|>1\}$?
- 5. Is $f(z) = c^z + c^{\sqrt{2}z}$ periodic $(z \in \mathbb{C})$? Prove your answer. Warning: the period of f, if exists, may not be real.
- 6. Describe the set

$$2\left|z-\frac{1}{2}\right| \leq \left|1-\frac{1}{2}z\right|, \ z \in \mathbb{C}.$$

國立中山大學九十二學年度博士班招生考試試題

科目:組合數學【應數系兩組】

共/頁第 頁

1 (17 points). Let G be a graph with mk edges. Prove that if G is k-edge colorable, then there is a k-edge coloring f of G in which every color class contains exactly m edges.

2 (17 points). A homomorphism from a digraph G to a digraph H is a mapping $f:V(G)\to V(H)$ such that $\overrightarrow{f(x)f(y)}$ is an arc of H whenever \overrightarrow{xy} is an arc of G. Let $\overrightarrow{T_n}$ be the transitive tournament on n vertices, i.e., $\overrightarrow{T_n}$ has vertices x_0, x_1, \dots, x_{n-1} , in which $\overrightarrow{x_ix_j}$ is an arc if and only if i < j. A directed walk of length n in a digraph G is a sequence v_0, v_1, \dots, v_n of (not necessarily distinct) vertices of G such that $\overrightarrow{v_iv_{i+1}}$ is an arc for $i=0,1,\dots,n-1$. Prove that there is a homomorphism from a digraph G to $\overrightarrow{T_n}$ if and only if G has no directed walk of length n.

- 3 (16 points). Prove that if a cubic graph G has a Hamilton cycle, then G is 3-edge colorable.
- 4 (16 points). Prove that an r-regular bipartite graph can be partitioned into k-regular bipartite subgraphs if and only if k is a factor of r.
- 5 (17 points). Prove that a graph G is a forest if and only if every pairwise intersecting family of paths in G has a common vertex.
- 6 (17 points). The Ramsey number R(p,q) is the least integer n for which the following holds: If the edges of K_n are colored by two colors, say red and blue, then there is either a red K_p (i.e., a K_p as a subgraph of K_n all of its edges are colored red) or a blue K_q . Prove that $R(p,q) \leq {p+q-2 \choose p-1}$.