25 points for each of the following problems

- 1. Let A_n be the square $\{(x,y): |x| \leq 1, |y| \leq 1\}$ rotated through the angle $2\pi n\theta$, n=1,2,... Explain what limsup A_n and liminf A_n are in case
- (a) $\theta = 1/8$.
- (b) θ is rational.
- $(c) \theta$ is irrational.
- 2. Suppose $(\Omega, \mathcal{F}, \mu)$ is a measure space and f_n are measurable functions with respect to this space.
- (a) Prove that if $0 \le f_n \to f$ almost everywhere and $\int f_n d\mu \le A < \infty$, then f is integrable and $\int f_n d\mu \le A$.
- (b) Suppose that f_n are integrable and $\sup_n \int f_n d\mu < \infty$. Show that, if $f_n \uparrow f$, then f is integrable and $\int f_n d\mu \rightarrow \int f d\mu$.
- 3. Prove that if $X_1, X_2,...$ are independent random variables (but need not be identically distributed), $E(X_n) = 0$, and $E(X_n^4)$ is bounded, then $S_n/n \to 0$ with probability 1, where $S_n = X_1 + X_2 + ... + X_n$.
- 4. State and prove the Central Limit Theorem for the i.i.d. case.

國立中山大學九十一學年度博士班招生考試試題

科目: 數理統計 【應數系甲組】

共之頁第一頁

1. (20%) The random variable is said to have a Pareto distribution with parameter a, b (a > 0, b > 0) if its density is

$$f(x;a,b) = \frac{a}{b(1+x/b)^{a+1}}, \ x > 0,$$

where F(x; a, b) denote the corresponding cumulatve distribution function (CDF). Let X_1, \ldots, X_n be independent and identically distributed (iid) with Pareto distribution f(x; 1, 1).

- (i) Find the limiting distribution of random variable $V_n = \max(X_1, \dots, X_n)/n$.
- (ii) Let $X_{(1)} \leq X_{(2)} \leq \cdots \leq X_{(n)}$ be the order statistics of $\{X_i, 1 \leq i \leq n\}$.
 - (a) Prove that $F(X_1; a, b)$ has U[0, 1] distribution.
 - (b) Find the joint probability density function of $(F(X_{(1)}; a, b), F(X_{(n)}; a, b))$.
- 2. (20%) Let X_1, \ldots, X_n be a random sample from the distribution with probability density function (p.d.f.)

$$f(x|\theta) = \frac{1}{\sigma}e^{-(x-\mu)/\sigma}, x \ge \mu, \theta = (\mu, \sigma), \mu \in R, \sigma > 0.$$

- (i) Find the maximum likelihood estimate (MLE) of μ and $\sigma.$
- (ii) Find the MLE of $P(X \ge t)$, where $t > \mu$.
- 3. (30%) Let X_1, \ldots, X_n be a random sample from the distribution uniform on the interval $[0, \theta]$.
 - (i) Find the sufficient statistics for θ , denote it as T_1 , and find $E(T_1)$.
 - (ii) Show that T_1 is a consistent estimate of θ .
 - (iii) Let mean square error

$$MSE_{\theta}(T) = E_{\theta}[T(X_1, \dots, X_n) - \theta]^2$$

be the risk function of an estimator T and admissibility is defined with respect to the mean square error. Is T_1 an admissible estimator for θ ? Prove or disprove it.

(iv) Consider the estimator $T_3 = (n+1)\min(X_1, \ldots, X_n)$. Show that T_3 is an unbiased estimator of θ and find an UMVUE estimator through T_3 , and explain it.

國立中山大學九十一學年度博士班招生考試試題

科目:數理統計【應數系甲組】

共 2頁第2頁

- 4. (30%) Let X_1, \ldots, X_n be a random sample from the distribution $N(\mu, \sigma^2)$ with known σ^2 .
 - (i) Consider the situation of testing the simple null hypothesis against the composite alternative hypothesis

$$H_0: \mu = 0$$
, v.s. $H_1: \mu > 0$.

Find an uniformly most powerful test for testing H_0 against H_1 on significance level α .

(ii) Consider the situation of testing the composite null hypothesis against the composite alternative hypothesis

$$H_0: \mu \leq 0$$
, v.s. $H_1: \mu > 0$.

Find an uniformly most powerful test for testing H_0 against H_1 on significance level α , if there is any. If there isn't any explain why.

(iii) Consider the situation of testing the simple null hypothesis against the composite alternative hypothesis

$$H_0: \mu = 0, \text{ v.s. } H_1: \mu \neq 0.$$

Find an uniformly most powerful test for testing H_0 against H_1 on significance level α , if there is any. If there isn't any explain why.

(iv) Discuss the above three testing problems when σ^2 is unknown.

科目:數值分析【應數系乙組】

共/頁第/頁

Entrance Exam for the Ph.D Program of Scientific Computing Six questions with the marks indicated.

4. (15) Derive the error bounds for the trapezoidal rule in two dimensions:

$$\int_0^h \int_0^k g(x,y) dx dy \approx \frac{hk}{4} (g(0,0) + g(h,0) + g(0,k) + g(h,k)).$$

5. (20) Consider the system of ordinary differential equations,

$$\frac{d\vec{u}}{dt} + A\vec{u} = \vec{f},$$

where \vec{f} is known and $\vec{u}(0)$ is given. The matrix A is symmetric and positive definite. Provide truncation errors, and derive stability analysis for the following scheme:

$$\frac{w^{n+1}-w^n}{\Delta t} + \frac{1}{2}A\{w^{n+1}+w^n\} = \vec{f}^{n+\frac{1}{2}}, \quad n \ge 0,$$

where w^n is used to approximate \vec{u} at $n\Delta t$.

6.(20) Given an original image $\{\phi_{ij}\}$ and other two images, $\{u_{ij}\}$ and $\{v_{ij}\}$, consisting of 256×256 pixels with 256 greyness levels. Form a linear combination

$$\{w_{ij}\} = \alpha\{u_{ij}\} + \beta\{v_{ij}\}.$$

Provide a numerical method to seek the parameters α and β such that the combined image $\{w_{ij}\}$ is best approximate to the original image $\{\phi_{ij}\}$.

P.S. In Questions 3-5, suppose that the solution is smooth enough.

^{1. (15)} Describe convergence and stability for numerical methods, give relations between them, and provide examples to explain your answers.

^{2. (15)} Given 26 English Capital letters, A, B, ..., Z, in standard forms. Describe the methods of recognizing a new character to be one of those 26 letters.

^{3. (15)} Describe the singular value decomposition for the matrix $A \in \mathbb{R}^{m \times n}$, $m \ge n$, and prove that the singular values are non-negative.

科目:分析【應數系丙組】

共一頁第一頁

Answer all the following problems. Here $\mathbf R$ and $\mathbf C$ denote the sets of real and complex numbers respectively.

- 1. (10%) Show that a compact set $K \subset \mathbb{R}^n$ has to be closed and bounded.
- 2. (10%) Show that if ϕ is a continuous real function on (a,b) such that for all $x,y\in(a,b)$,

 $\phi(\frac{x+y}{2}) \le \frac{1}{2}\phi(x) + \frac{1}{2}\phi(y) \ ,$

then ϕ is convex on (a, b).

- 3. (10%) Let $f \in L^1(\mathbf{R})$, $g(x) = \int_{-\infty}^{\infty} f(t) e^{ixt} dt$. Show that g is continuous at x = 0.
- 4. (10%) Find a complex mapping that maps the set $\{z \in \mathbb{C} : |z| < 1, \text{ Re } z > 0, \text{ Im } z > 0\}$ onto the half-plane Re z > 1.
- 5. (15%) Show that if (a_n) is a sequence in **R**, and $\lim_{n\to\infty} a_n = a \in \mathbf{R}$, then

$$\lim_{n\to\infty}\frac{a_1+a_2+\ldots+a_n}{n}=a.$$

- 6. (15%) Let μ and ν be two positive measure on \mathbf{R} . Show that if μ is absolutely continuous with respect to ν , and the two measures are mutually singular, then $\mu = 0$.
- 7. (15%) Let H be a Hilbert space with inner product <,> and norm $||f|| = \sqrt{< f, f>}$. Suppose $M = \text{span}\{\phi_1, \phi_2, \dots, \phi_n\}$ be the subspace spanned by $\phi_1, \dots, \phi_n \in H$. Show that for any $f \in H$, there exists a unique $h \in M$ such that

$$||f-h|| = \min_{g \in M} ||f-g||.$$

8. (15%) Let Ω be an open subset of \mathbf{C} , and $f: \Omega \to \mathbf{C}$ is differentiable when Ω and \mathbf{C} are viewed as sets in \mathbf{R}^2 . Define

$$\partial = \frac{1}{2} \left(\frac{\partial}{\partial x} - i \frac{\partial}{\partial y} \right) , \qquad \overline{\partial} = \frac{1}{2} \left(\frac{\partial}{\partial x} + i \frac{\partial}{\partial y} \right) .$$

Show that f is holomorphic on Ω if and only if $\overline{\partial} f(z) = 0$ for all $z \in \Omega$.

國立中山大學九十一學年度博士班招生考試試題

科目:組合數學【應數系兩組】

共/頁第/頁

- 1 (20 points). Prove that if G is a finite graph which is not complete and $\Delta(G) \geq 3$, then $\chi(G) \leq \Delta$.
- 2 (20 points). Without using Lovasz perfect graph theorem, prove that $\chi(G) = \omega(G)$ if \bar{G} is a bipartite graph.
- 3 (20 points). State and prove Euler's formula for planar graphs.
- 4 (20 points). Suppose G is a bipartite graph. Prove that if λ is an eigenvalue of the adjacent matrix A of G of multiplicity m, then $-\lambda$ is also an eigenvalue of A of multiplicity m.
- 5 (20 points). Suppose m > 2n are positive integers. An *n*-subset A of the set $\{1, 2, \dots, m\}$ is called *stable* if for any two elements i, j of $A, 2 \le |i j| \le m 2$. What is the total number of stable *n*-subsets of $\{1, 2, \dots, m\}$?