

Ph.D. Entrance Examination Numerical Analysis May 2, 2014

Please write down all the detail of your computation and proof. Twenty points for each problem.

- 1. (1) Write down the algorithm of Newton method to solve a root γ of the nonlinear equation f(x) = 0.
 - (2) If γ is a simple root of f(x) and the initial value is sufficiently close to γ , show that this iteration converges to γ quadratically by the fixed point theorem.
 - (3) What happens if γ is a multiple root? Why?
- 2. How to find the Hermite polynomial that interpolates n+1 data (x_i, y_i, y_i') for $i=0,1,\dots,n$ with all x_i distinct? State your method and show it works.
- 3. What is Gaussian quadrature for numerical integration? In what sense that it is best? Prove that it can achieve the best approximation.
- 4. Let T be an $n \times n$ matrix and \mathbf{v} be an n dimensional column vector. Prove that the iterative method $\mathbf{x}^{(k+1)} = T\mathbf{x}^{(k)} + \mathbf{v}$ converges if, and only if, the spectral radius $\rho(T) < 1$. Please provide the detail for all theorems you use in the proof.
- 5. Let A be an $m \times n$ matrix with full rank and $m \ge n$. How to use (1) normal equation, (2) QR factorization, (3) singular value decomposition to obtain the least squares solution of $A\mathbf{x} = \mathbf{b}$? Explain why they work?