每題 20 分,共 5 題,請詳列計算和推導過程書寫於題目下方空白處。

問題		4: 20 分	5: 20 分	總分: 100 分
得分				

1. Let (X_1, \ldots, X_n) be a random sample from the uniform distribution on the interval [0,1] and let $R = X_{(n)} - X_{(1)}$, where $X_{(i)}$ is the *i*th order statistic. Derive the probability density function of R and find the limiting distribution of 2n(1-R).

2. Let (X_1, \ldots, X_n) be a random sample from the uniform distribution on the interval $\left(\theta - \frac{1}{2}, \theta + \frac{1}{2}\right)$, where $\theta \in \mathbb{R}$ is unknown. Let $X_{(j)}$ be the *j*th order statistic. Show that $(X_{(1)} + X_{(n)})/2$ is strongly consistent for θ and also consistent in mean squared error.

3. Let (X_1, \ldots, X_n) be a random sample from a population having the probability density function

$$f_{\theta_1,\theta_2}(x) = \begin{cases} (\theta_1 + \theta_2)^{-1} e^{-x/\theta_1} & x > 0\\ (\theta_1 + \theta_2)^{-1} e^{x/\theta_2} & x \le 0 \end{cases}$$

where $\theta_1 > 0$ and $\theta_2 > 0$ are unknown. Obtain a moment estimator of (θ_1, θ_2) and its asymptotic distribution.

- 4. Let (x_1, \ldots, x_n) be a random sample from a population on \mathbb{R} with probability density function f_{θ} . Let θ_0 and θ_1 be two constants. Find a UMP test of size α for testing $H_0: \theta = \theta_0$ versus $H_1: \theta = \theta_1$ in the following cases:
 - (i) $f_{\theta} = e^{-(x-\theta)} I_{(\theta,\infty)}(x), \ \theta_0 < \theta_1;$
 - (ii) $f_{\theta}(x) = \theta x^{-2} I_{(\theta,\infty)}(x), \ \theta_0 \neq \theta_1.$

5. Let $X = (X_1, ..., X_n)$ be a random sample from the Weibull distribution with probability density function $\frac{a}{\theta}x^{a-1}e^{-x^a/\theta}I_{(0,\infty)}(x)$, where a > 0 and $\theta > 0$ are unknown. Show that $R(X, a, \theta) = \prod_{i=1}^n (X_i^a/\theta)$ is pivotal. Construct a confidence set for (a, θ) with confidence coefficient $1 - \alpha$ by using $R(X, a, \theta)$.

國立中山大學101學年度博士班統計組招生考試試題

科目: 【機率論】 注意: 每一題必須將過程淸楚寫下來 每一題20分

1. Let X_1, X_2, \ldots be independently identically distributed with mean μ (i.e. $EX_1 = \mu$) and variance σ^2 (i.e. $Var(X_1) = \sigma^2$). Please Prove

$$\frac{\sqrt{n}(\bar{X} - \mu)}{\sqrt{\frac{\sum_{i=1}^{n}(X_i - \bar{X})^2}{n}}} \sim N(0, 1),$$

where \bar{X} is the sample mean of X_1, \ldots, X_n .

2. Let X_1, X_2, \ldots , be a sequence of random variables and X be a random variable. Please answer the following questions:

(a) If $X_n \to X$ almost surely, prove $X_n \to X$ in probability.

(b) Give an example that $X_n \to X$ in probability but X_n does not converge to X almost surely.

3. Let X_1, X_2, \ldots be independently identically distributed with density $f(x) = 2x^{-3}I_{(1,\infty)}(x)$, where I is an indicator function. Prove $\frac{X_n}{n} \to 0$ almost surely. (Hint: You can use Borel-Cantelli Lemma.)

4. Suppose that X_1 and X_2 are independent gamma variables, and the density functions of X_1 and X_2 are $\frac{1}{\Gamma(\alpha)}x_1^{\alpha-1}\exp(-x_1), 0 < x_1 < \infty$ and $\frac{1}{\Gamma(\beta)}x_2^{\beta-1}\exp(-x_2), 0 < x_2 < \infty$, respectively. Please prove that the distribution of X_1 is beta distribution (You need to express the parameters of the beta distribution using α and β).

5. X is a non-negative random variable (i.e. $X \ge 0$) with cumulative distribution function F(t) and expectation $E(X) < \infty$. Please Prove

$$E(X) = \int_0^\infty (1 - F(t))dt.$$

Department of Applied Mathematics, National Sun Yat-sen University Ph.D. Entrance Examination – Analysis (May, 2012)

Answer all the problems below. The total is 100%. The first problem carries 10%. Each of the rest carries 15%. Unless otherwise stated, f is a real-valued function defined on \mathbf{R} .

- 1. Show that if f and g are continuous real-valued functions on an open set $O \subset \mathbb{R}^n$, then the function h defined by $h(x) = \min\{f(x), g(x)\}$ is also continuous on O.
- 2. Let g_i $(1 \le i \le n)$ be square integrable functions defined on [a,b]. Show that $\left[\sum_{i=1}^{n}(\int_{a}^{b}g_i)^2\right]^{1/2} \le \int_{a}^{b}\left[\sum_{i=1}^{n}g_i^2\right]^{1/2},$

and equality holds if and only if all g_i 's are multiples of some fixed function ϕ .

3. Let m^* be the Lebesgue outer measure on R. Define

 $m_*(A) = \sup\{m^*(K) : K \text{ is a compact subset of } A\}.$

Show that if A is measurable and $m(A) < \infty$, then $m_*(A) = m^*(A)$.

- 4. Give the definition of f being a measurable function. Suppose that for any $c \in \mathbb{R}$, $f^{-1}[\{c\}]$ is a measurable set. Is f a measurable function? Prove or disprove.
- 5. Let $\{g_n\}$ be a sequence of nonnegative integrable functions defined on a measurable set $E \subset \mathbb{R}$, which converges a.e. to an integrable function g. Let $\{f_n\}$ be a sequence of measurable functions on E such that $|f_n| \leq g_n$ and f_n converges to f a.e. $x \in E$. Show that if $\int_E g = \lim_{n \to \infty} \int_E g_n$, then

$$\int_{E} f = \lim_{n \to \infty} \int_{E} f_n.$$

6. Let E be a measurable set and $1 . Suppose that <math>\{f_n\}$ converges to f weakly. Show that there is a subsequence $\{f_{n_k}\}$ such that

$$\lim_{k \to \infty} \frac{f_{n_1} + f_{n_2} + \dots + f_{n_k}}{k} = f \quad \text{strongly in } L^p(E).$$

7. Show that any compact subset of a metric space has to be closed and bounded.

End of Paper

(10%)

注意:每個問題必需證明或說明清楚。

- 1. Let a_n be the way to distribute n identical balls into five distinct boxes with the first box having at most two balls.
 - (a) Find the generating function for a_n .

(b) Find a_{505} . (10%)

- 2. Let $S=\{1,2,3,4,5\}$, A be the set of all permutations of S, and $B=\{(a,b,c,d,e)\in A: a\notin\{1,5\}, b\notin\{2,3\}, c\notin\{3,4\}, d\notin\{4,5\}, and e\notin\{3,5\}\}$. Find the cardinality of the set B. (20%)
- 3. Let G be a simple planar graph. Prove that if every subgraph of G has a vertex of degree ≤ 5 , then G is 5-colorable. (20%)
- 4. Prove Hall's Theorem by two different methods. (20%)
- 5. Let n be a positive integer and [n] be the set $\{1,2,...,n\}$. Define G as a graph with vertex set of G being all subsets of [n], and edge set $\{AB: A \text{ is a subset of B}\}$. Find a maximum independent set of G. (20%)