(00管车度博士外招告我).應用款學來學說、機爭論

Do all problems in detail. 20 points for each problem.

1. Let X, Y be independent Poisson random variables with $E(X) = \lambda$ and $E(Y) = \mu$, and let Z = X + Y. Show that

$$E[X|Z=2] = \frac{2\lambda}{\lambda + \mu}.$$

- 2. Let X and Y be independent exponential random variables with mean 1/5. Suppose $f(t) = t^3$ and $g(t) = e^t$ for all $t \in \mathbb{R}$.
 - (a) Show that $[f(X) f(Y)][g(X) g(Y)] \ge 0$ with probability 1.
 - (b) Show that $E[f(X)g(X)] \ge E[f(X)]E[g(X)]$.
- 3. Let X have a uniform distribution on [1/2, 3/2]. Show that $E[X \log X] \geq 0$.
- 4. Assume $\{X_n\}_{n\geq 1}$ be a sequence of independent and identically distributed random variables with probability density functions $f(x)=2x, 0\leq x\leq 1$. For all $n\in\mathbb{N}$, let $Y_n=1$ if $X_n<1/2$ and $Y_n=0$ if $X_n\geq 1/2$. Show that

$$\lim_{n\to\infty} \frac{1}{n^2} \sum_{i=1}^n \sum_{j=1}^n Y_i (1-Y_j)$$
 exists with probability 1

and find the limit.

5. Let $\{A_n\}_{n\geq 1}$ be a sequence of events and $B_n=A_n^c\cap A_{n+1}$. Assume

$$\sum_{n=1}^{\infty} P(B_n) < \infty \quad \text{and} \quad \lim_{n \to \infty} P(A_n) = 0.$$

(a) Show that
$$P\left(\bigcap_{k=1}^{\infty}\bigcup_{n=k}^{\infty}B_n\right)=0.$$

(b) Show that
$$P\left(\bigcap_{k=1}^{\infty}\bigcup_{n=k}^{\infty}A_n\right)=0.$$

每題 20 分, 共 5. 題, 請詳列計算和推導過程書寫於題目下方空白處。

問題	 2: 20 分	 		總分: 100 分
得分				
			li	

1. Let (X_1, \ldots, X_n) , n > 2, be a random sample from the uniform distribution on the interval $(\theta_1 - \theta_2, \theta_1 + \theta_2)$, where $\theta_1 \in \mathbb{R}$ and $\theta_2 > 0$. Find the UMVUE's of θ_j , j = 1, 2, and θ_1/θ_2 .

- 2. Show that the priors in the following cases are conjugate priors:
 - (a) $X = (X_1, ..., X_n)$ is a random sample from $N_k(\theta, I_k)$, $\theta \in \mathbb{R}^k$, and the prior is $N_k(\mu_0, \Sigma_0)$;
 - (b) $X = (X_1, ..., X_n)$ is a random sample from the binomial distribution with probability θ and size k (a known positive integer), $\theta \in (0, 1)$, and the prior is the beta distribution with parameter (α, β) .

3. Consider the estimation of an unknown parameter $\theta \in \mathbb{R}$ under the squared error loss. Show that if T and U are two estimators such that $P(\theta - t < T < \theta + t) \ge P(\theta - t < U < \theta + t)$ for any t > 0, then the squared error loss $R_T(P) \le R_U(P)$.

- 4. In each of the following situations, calculate the p-value of the observed data.
 - (a) For testing $H_0: \theta \leq \frac{1}{2}$ versus $H_1: \theta > \frac{1}{2}$, 7 successes are observed out of 10 Bernoulli trials.
 - (b) For testing $H_0: \lambda \leq 1$ versus $H_1: \lambda > 1, X = 3$ are observed, where $X \sim \text{Poisson}(\lambda)$.

- 5. Let X be a single observation from the beta(θ , 1) pdf.
 - (a) Let $Y = -(\log X)^{-1}$. Evaluate the confidence coefficient of the set [y/2, y].
 - (b) Find a pivotal quantity and use it to set up a confidence interval having the same confidence coefficient as the interval in part (a).

Ph.D. Entrance Examination Numerical Analysis May 6, 2011

(区紀)

Please write down all the detail of your computation and proof. Twenty points for each problem.

- 1. Let γ be a simple root of nonlinear equation f(x) = 0 where f(x) is smooth. Apply the Newton method to find γ . Show that this Newton iteration converges quadratically if the initial guess is sufficiently close to γ . What happens if γ is a double root?
- 2. Find (1) the Hermite polynomial, (2) the free cubic spline that interpolates $\frac{1}{x}$ at $x_0 = \frac{1}{2}$ and $x_1 = 1$.
- 3. Derive the trapezoidal rule and composite trapezoidal rule for numerical integration with error formula.
- 4. Let T be an $n \times n$ matrix and \mathbf{v} be an n dimensional column vector. Prove that the iterative method $\mathbf{x}^{(k+1)} = T\mathbf{x}^{(k)} + \mathbf{v}$ converges if, and only if, the spectral radius $\rho(T) < 1$. Please provide the detail for all theorems you use in the proof.
- 5. Use Taylor method of order n to solve the initial value problem of ODEs

$$\begin{cases} y'(x) = x - y(x) + 1, & x > 0 \\ y(0) = 1 \end{cases}$$

with step size h. Simplify the recurrence formula for numerical approximation of y(kh), $k = 0, 1, 2, \cdots$.

Department of Applied Mathematics, National Sun Yat-sen University Ph.D. Entrance Examination – Analysis (May, 2011)

Answer all the problems below. The total is 100%.

- 1. (a) (5%) Define the term limit infimum of a sequence $\lim_{n\to\infty} x_n$ in **R**.
 - (b) (10%) If $\lim_{n\to\infty} x_n = \infty$, what can you tell about the sequence $\{x_n\}$? Support your argument.
 - (c) (10%) A function f defined on (0,1) is said to be lower semicontinuous at $a \in (0,1)$ if for any sequence $x_n \to a$, we have $f(a) \leq \underline{\lim}_{n \to \infty} f(x_n)$. Give an example of a lower semicontinuous but not continuous function on (0,1). Verify your answer.
- 2. (20%) Let $\{x_n\}$ be a sequence in R such that $\lim_{n\to\infty} x_n = a$.
 - (a) Show that $\lim_{n\to\infty} \frac{x_1 + x_2 + \dots + x_n}{n} = a$.
 - (b) Suppose that all x_i 's and a are positive, prove that $\lim_{n\to\infty} (x_1x_2\cdots x_n)^{1/n} = a$ too.
- 3. (20%) Define the functions f and g on [-1,1] by $f(x)=x^{1/3}$ and

$$g(x) = \begin{cases} x^2 \cos(\frac{\pi}{2x}) & \text{if } x \in [-1, 1] \setminus \{0\} \\ 0 & \text{if } x = 0. \end{cases}$$

- (a) Show that both f and g are absolutely continuous on [-1,1].
- (b) Show that the composition $f \circ g$ is not absolutely continuous on [-1,1]. Hint: Consider the variation of f with respect to the partition P_n given by

$$P_n = \left\{-1, 0, \frac{1}{2n}, \frac{1}{2n-1}, \dots, \frac{1}{3}, \frac{1}{2}, 1\right\}.$$

- 4. (a) (6%) State the Fatou's lemma.
 - (b) (14%) Let $\{g_n\}$ be a sequence of integrable positive functions defined on a measurable set $E \subset \mathbf{R}$, which converges a.e. to an integrable function g. Let $\{f_n\}$ be a sequence of measurable functions on E such that $|f_n| \leq g_n$ and f_n converges to f a.e. $x \in E$. Using part (a) or otherwise, show that if $\int_E g = \lim_{n \to \infty} \int_E g_n$, then

$$\int_{E} f = \lim_{n \to \infty} \int_{E} f_{n}.$$

5. (15%) Let Ω be a measurable set in \mathbf{R}^n . Suppose that $\{f_n\}$ converges weakly to f in $L^2(\Omega)$. That is, for any $g \in L^2(\Omega)$, $\lim_{n \to \infty} \int_{\Omega} g f_n = \int_{\Omega} g f$. Show that the $\{f_n\}$ converges (strongly) to f in $L^2(\Omega)$ if and only if $\lim_{n \to \infty} \|f_n\|_2 = \|f\|_2$.

End of Paper