國立中山大學八十八學年度領博士班招生考試試題

<u> </u>	科 目: 綜合化學 (化學系博士班) # #	頁 第 / 頁
-	有機化學、無機化學、物理化學、分析化學任選二科	
	Physical Chemistry	-
5	 Describe how variation method and perturbation method dealing with the time- independent Schroedinger equation for systems of several interacting particles.(15%) 	5
-	2. Describe the procedure of Hartree-Fock calculation.(15%)	-
	3. Does the solubility of a solid in a liquid exhibit appreciable pressure dependence?(10%)	
10	4. Describe how conventional transition-state theory dealing with the reaction rate calculation.(10%)	10
-		
-	無機化學 (50分)	
15	 Draw the crystal field splitting diagrams of d-orbitals for (i) an octahedral complex ML₆ (ii) a square planar complex ML₄, and (iii) a linear complex ML₂. (9%) 	
20	 Compounds that have the same chemical formula but different structural arrangement are called isomers. Briefly describe the (i) linkage isomerism, (ii) optical isomerism, and (c) stereo isomerism by using the idealized complex Co(Cl)₂(Br)₂(SO₂)(H). (9%) 	20
-	 3. Draw a correct structure for each of the following compounds: (12%) (i) (η⁵-C₅H₅)₂Ni (ii) Al₂Me₆ (iii) Fe(CO)₅ (iv) O₃ 	
25	4. Give the products for each of the following reactions: (12%) (i) CaCO ₃ (ii) W(CO) ₄ (NCMe) ₂ + (Me) ₂ PCH ₂ CH ₂ P(Me) ₂ (iii) 2 Na ⁺ C5H ₄ + FeCl ₂ (iv) Cu(H ₂ O) ₆ ²⁺ (aq) + excess NH ₃ (aq)	25
-	5. Describe the following terms: (8%)(i) chemical vapor deposition of metal film	
30	(ii) nonlinear optics metal-containing materials	

國立中山大學八十八學年度預博士班招生考試試題

科 目: 綜合化學 (化學系博士班)

共 4 頁 第 2 頁

10

15

20

25

有機化學、無機化學、物理化學、分析化學任選二科

ANALYTICAL CHEMISTRY

Note: Always consider the significant figures in all your calculations!!

- (7%) 1.(a) For a solution that is 0.0100 M in KCl, calculate the concentration of K in ppb. (K=39.10, KCl=74.45)
 - (b) What does "ppb" stand for ?
 - (c) 0.821 + 1.73 2.0843 = ?
- (7%) 2. Calculate the pH of a solution prepared by mixing 50.00 mL of 0.0800 M NaH₂PO₄ with 40.00 mL of 0.0400 M HCl. (for H₃PO₄; K_1 = 7.11 x 10⁻³ : K_2 = 6.34 x 10⁻⁸; K_3 = 4.2 x 10⁻¹³ ; also, P = 31.0; Na = 23.0)
- (7%) 3. Calibration curve method and standard addition method are two common techniques for quantitative analysis of unknown samples.
 - (a) What is/are the difference(s) between them?
 - (b) Which method is usually better? Why?
- (8%) 4. Monochromator is a very important component of various spectrophotometers, e.g., UV/Vis, IR, AA,...etc.
 - (a) What is the monochromator?
 - (b) Show the schematic diagram of a Czerney-Turner monochromator and explain how it works.
- (7%) 5. FID is a common detector for GC.
 - (a) What does FID stand for (in English)?
 - (b) Show the schematic diagram of FID and explain how it works.
 - (c) What are the advantage(s) and disadvantage(s) of this detector? Why?
- (7%) 6.(a) What is the reversed-phase liquid chromatography (LC)?
 - (b) Predict the elution order of n-pentane, n-pentanol, and n-hexanol in a reversed-phase LC. Why?
- (7%) 7. Cyclic voltammetry (CV) is used principally to characterize the redox properties of compounds and to study the mechanism of redox reactions.
 - (a) Show the potential waveform used in CV.
 - (b) If a typical cyclic voltammogram (CV gram) is shown in Fig. 1, what information can you obtain from this CV gram?

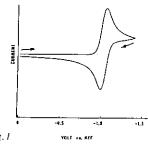


Fig. 1

301

25

10

15

20

國立中山大學八十八學年度猶博士班招生考試試題

科 目: 綜合化學(化學系博士班)

共少页第夕页

有機化學、無機化學、物理化學、分析化學任選二科 ORGANIC CHEMISTRY - Give the major product of the following reactions (3% each) $\bigvee_{ch}^{N(ch_3)_2} \xrightarrow{ha} \bigwedge$ Br (-0)
1. Mg, ether
2. CO2
3. H30+ 10 10 3. HOCK CHICK COOH HT hint: this is a cyclic adduct 15 15 4. CH2 CH2 CH2 CN CH3 CH3 O+ hint: the product is a Ketone 5. EtO2C-CH2C-OC2H5 (NaOC2H5/CH2H50H) 20 20 $\xrightarrow{H^T, \Delta}$ 6. CH2 = CH - C'CH3 - CH3 25 O) C-H + H C H OH /

國立中山大學八十八學年度獲博士班招生考試試題

綜合化學(化學系博士班) 科 共少页 第十页 有機化學、無機化學、物理化學、分析化學任選二科 0) + CH3-C CH3 H+ 0 + CH3CH2-C-CI AICI3 == (Hg) (10 hint: this produt is a dibromo compound - Explain the following problems briefly (5% 1. Why pyrrole is a much weaker base than 15 15 pyridine. +. The following hydrocarbon has an unusually large dipole moment, Why? 20 20 3. Explain why in why

| The list Alder Reaction | But +11 -0 no Diels-Alder Reacts 4. Explain why 25 HC = C = Na + CH3 CH3 CH3 - BY - SN 2 HC = C - CH3 CH3 CH3 C + Na BY CHCH_C = C = Na + H3C - CH - CH3 = 2 CH3 CH2 - C = C - H

30