B e KA A 28 R e 2 AR
/ir’wLE:ﬁ'ﬁ*%g%[’ﬁl-?] ‘ TS ENE

1. (15%)Let £ = 6143 -y, and y = BBy - < - b, be two strings over some alphabet £. Suppose
we want Lo trapslorm z'into y by using minimum number of insertions, deletions, and re-
placements. For example “convert” can be transformed into "counter” by inserting “u” after
“0”, replacing “v” by ‘t" and deleting “t”. Let ¢;; be the minimum oumber of insertions,
delefions, and replacements to transform aya; - - - a; into byby - - - b;.

(a) State what the trivial subproblems are, and give their ¢ values.

(b) Show that ¢;; = min{esy; - 1,cigo1 + L, Gioggor + b5}, where &;; = 0 if a; = b; and
8;7 = 1, otherwise. )

(¢) Describe an efficient algorithm for determining the minimum number of insertions and
deletions to transform z into 7.

(d) Find the time complexity of the algorithm.

2. {15%)Quick sort is a sorting algorithm for an array A = [a;, @z, . .., ] 1t first swaps elements
of the array and splits the array into two patte A = [o},a},..., )] and A, = [a}, |, a},,, ..., al)]
so that ¢ < o for every o] € A, and every o} € A,. Tt then recursively sorts A; and A,.
Supposc that you are going to design a nonrecursive version of quick sort, and choose to use
a stack Lo store the ranges of the array yet to be sorted. The new algorithm sorls the part of
the array whose range is stored on the top of the stack until the stack is empty. Initially, the
stack conteins only onc range, [1..n], which means that the entire array is io be sorted.

(8) Describe the nonrecursive version of the algorithm,
(b) Show that if you store the smaller part of Lhe array on top of the stack after each split,

then the size of the stack will be bounded by [logn] -+ 1.

3. (20%)Let S be a sct of n elements. Initially, each element in S is a set by itself. The union-
find problem on the set § consists of a sequence of union(z,y) snd find(z) operations. The
union(z,y) operation makes the sel. containing x and the set conlaining y into one set. The
find(z) operation reports the name of the set to which 2 belongs. The nome of a sel con be
anything you like, but it must not be changed, unless the sei is unioned into another set.

{a) Design data structures and algorithms for the unjon-find problem so that both union
and find operations can be done efficiently for large |S|.

(b) Analize the time complexity of union(z,y) and find(z).

(c) Anslize the time complexity for a sequence of m union and find operations.

(d) Describe an application of the union-find problem.




EIMAL IR /0 et R g E Sl X ]
FEHERIK(RLE] fn ko

4. (20%;) Cache performance can be improved by reducing the miss penally, miss rate, or hit time.
.1 (5%) Describe five lechniques to reduce the iniss penalty,

.2 (5%) Describe five techniques to reduce the miss rate.

4.3 (5%) Describe three teehnigues to reduee the miss penally or miss rate vier parallelism.

4.4 (5%) Describe three techniques to reduce the hil time.,

3. (10%) Whal are the differences belween general-purpose CPU and digital signal processors
(DSPY? Cxplain (heir differences in addressing modes, types of sizes of operands, operations,
compiler support, .. .etc.

6. (0%)The instruction sel architectures can be classificd into four categories:

aceumudator : all operations occur belween a single register and a memory
memory-memary @ all insteuction addresses reference only memory locations.

Stack - all operands occur on top of the stack. Push and Pop are the only instructions (hat
access memeory; all other remove their operands from the stack and replace them with the
result. The implementation uses a hardwired stack for only the top two stack entrics, which
keeps the processor cireuil very small and low cosl. Additional stack positions are kepl in
memory locations, and access 1o these stack positions require memory refcrences.
Load-stare: all operations occur in registers, and register-to-register instructions have three
regisier names per insirection.

Tnvent your own assembly language mnemonics (the following figure provides a usclul sample Lo
generatize), and for cach architecture, wrile the best equivalent assembly language code for this

high-level language code sequence:

A=B+C
B=A+C;
D=A-B;

Which architeclure is most efficient as measured by code size? Which archilectuse is most clficient
as measured by Lotal memory trafTic (code + data)?

Register
Stack Accumutator (register-memary) Register {load-store)
Push A Load A Load RL,A load RI,A
Push B Add B Add  R3,R1,B Load R2,B
Add Store € Store R3,C Add  R3,R1.R2
Pap € Store R3,C

Fig: The eode sequence Tor C = A+ B Tor Tour classes of instruction sets.






