國立中山大學八十八學年度碩博士班招生考試試題

科目: 計算機系統」(資訊程研究所博士班)

共 3 頁 第

NOTE: The problems have been carefully checked before they are given to you. However, if there are questions which seem unclear or not well-defined to you, don't worry. You can make your own assumptions in such cases. <u>Please state clearly in the answer sheet what's the problems and the assumptions you made.</u> The grading is flexible.

1. Performance Analysis (25%)

Speedup is the measure of how a computer performs after some enhancement relative to how it performed previously. The speedup is defined as:

 $Speedup = \frac{Performance after improvement}{Performance before improvement} = \frac{Execution time before improvement}{Execution time after improvement}$

where

Execution time after improvement = Execution time affected by improvement + Execution time unaffected

Amount of improvement

1.1 (20%) Suppose we enhance a computer to make all floating-point instructions run five times faster. Let's look at how speedup behaves when we incorporate the faster floating-point hardware into the computer. If the execution time of some program before the floating-point enhancement is 10 seconds, what will the speedup be if 25%, 50%, 75% or 100% of the 10 seconds is spent executing floating-point instructions, respectively? Please show your calculation in your answer sheet, copy the following table to your answer sheet and fill it with the answers.

Fraction of executed floating-point instructions in the program	Speedup
25%	
50%	
75%	
100%	

1.2 (5%) We are looking for a program to demonstrate that the new floating-point unit described in Question 1.1 gives a speedup of 3. If the execution time of one such program is 100 seconds with the old floating-point hardware, how much percentage of the original execution time should be executing floating-point instructions in order to show an over speedup of 3?

25

20

10

15

25

10

15

20

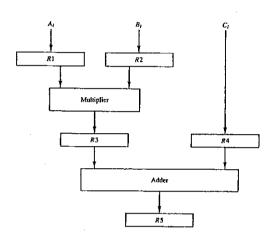
30

國立中山大學八十八學年度碩博士班招生考試試題

科 目:計算機系統(資訊)程研究所博士说)

共3頁第2頁

2. Pipeline Structure (25%)


10

15

20

25

The pipeline of the following figure has the propagation times: 45 ns for the operands to be read from memory into registers R1 and R2, 50 ns for the signal to propagate through the multiplier, 5 ns for the transfer into R3, and 20 ns to add the two numbers into R5.

- 2.1 (5%) What is the minimum clock cycle time that can be used?
- 2.2 (5%) A non-pipeline system can perform the same operation by removing R3 and R4. How long will it take to multiply and add the operands without using the pipeline?
- 2.3 (10%) Calculate the speedup of the pipeline (with respect to the non-pipeline system) for 10 tasks and 100 tasks, respectively.
- 2.4 (5%) What is the maximum speedup that can be achieved?

20

10

15

5

20

國立中山大學八十八學年度獲博士班招生考試試題

科 目: 計算機系統(資訊工程研究所博士班)

共3頁第3頁

10

15

20

25

- 3. Explain each of the following terms. (10%)
 - (a) NP
 - (b) NP-complete
 - (c) greedy method
 - (d) lower bound of a problem
 - (e) prune and search
- 4. Define the Fibonacci binary tree of order n as follows: If n = 0 or n = 1, then the tree consists of a single node. If n > 1, the tree consists of a root, with the Fibonacci tree of order n 1 as the left subtree and the Fibonacci tree of order n 2 as the right subtree.
 - (a) Draw a Fibonacci tree of order 4. (3%)
 - (b) How many leaves are there in the Fibonacci tree of order n, n > 1? (4%)
 - (c) What is the depth of the Fibonacci tree of order n, n > 1? Assume that the depth of the tree consisting of a single node is 1. (4%)
 - (d) What is a height-balanced binary tree? Is a Fibonacci tree a height-balanced binary tree? Why? (4%)
- 5. There is a recursive C function to find the maximum of n elements stored in an array: max(int a[], int n)

```
/* The data elements are stored in a[1],a[2],...,a[n] */
/* n: number of elements in array a[] */
{
    printf("ENTERING");
    if(n==1)
        return(a[1]);
    else
        if (a[n]>=max(a,n-1))
        return(a[n]);
    else
        return(max(a,n-1))
```

In the main program, we have a call max(a, m), $m \ge 1$, to the above function.

- (a) How many times the message ENTERING is printed at least? What situation will cause the least number of message ENTERING to be printed? (5%)
- (b) How many times the message ENTERING is printed at most? What situation will cause the most number of message ENTERING to be printed? (5%)
- (c) How many times the message ENTERING is printed in average? It is assumed that the data are in a uniform distribution. And, in this problem, you need only to write down the recurrence formula, need not derive the formula. (5%)
- 6. Let $P = (p_1, p_2, \dots, p_n)$ be a permutation of $\{1, 2, \dots, n\}$. $g_i, 2 \le i \le n$, is a permutation operator that $g_i(P) = (p_i, p_{i-1}, \dots, p_3, p_2, p_1, p_{i+1}, p_{i+2}, \dots, p_n)$. Consider n = 5. For example, $g_4(51423) = (24153)$ and $g_3(12345) = (32145)$.
 - (a) Given a permutation (23514), what sequence of permutation operators can be applied to get the permutation (12345)? (3%)
 - (b) (12345) is called the identity permutation. For any given permutation, design a general algorithm for deciding how to apply the permutation operators to transform the given permutation to the identity permutation. How many permutation operators are required for any value of n in the worst case? (7%)

15

10

20

25

30