N e el AR A A

(%K) AT ’('m’)\'{ ,L,m.#_ 5,5133"ﬂ?fﬁ’fﬂ i%"%\”i\K
o8 TR ES WLE oy s Y w w /w

\._\

10

15

201

25

1. (Sorting, 30 %)

The following pseudo code implements some sorting technique:

SOME_SORT(A, p, r)
Ifp <rthen
q = PARTITION (A, p, r)
SOME_SORT(A, p, q)
SOME_SORT (A, q+1, 1)

PARTITION(A, p, r)
x = Alp]
i=p-1
j=r+l
while TRUE
repeatj =j-1
until A[j] <=x
repeati = i+l
until A[i] >=x
ifi <jthen
exchange A[i] and A[j]
else

return j

(1) (5%) What is the name of the sorting technique described by the procedure
SOME_SORT ?)

(2) (5%) Show that the computation complexity of the procedure PARTITION is O(n)
where n = r-p+1.

(3) (5%) The worst-case behavior for the above sorting method occurs when the
partitioning routine PARTITION produces one region with n-1 elements and the other
region with only 1 element. What is the worse-case computation complexity of the
sorting method?

(4) (5%) The best-case behavior of the sorting method is when the partition procedure
produces two regions of equal size of n/2. What is the best-case computation
complexity of the sorting method?

(5) (5%) Is the average-case computation complexity of the sorting method closer to
the worst-case situation or the best-case situation? Why?

(6) (5%) Please give the names of five other different sorting methods you can think
of.

a

15

4 - -

420

At =

(¥R

B s RN SR AT L8 £ 4 A
Y4 B\ ﬁ%%%:@ TMTASTANT x4 r % >n

10

151

20

251

30

2. (Tree, 20%)

A B-tree T is a rooted tree (with root denoted by root{T]) having the following
properties:

. (i) Every node x has the following fields:

a. nfx], the number of keys currently stored in node x,
b. key,fx], key,{x], ..., key, ,[x], the n[x] keys stored in node x in non-decreasing
order: key,[x] <key,[x]<A <key,,[x],and

¢. leaffx], a Boolean value which is TRUE if x is a leaf and FALSE if x is an
internal node. ; :
d. If x is an internal node, it also contains nfx]+1 pointers ¢,{x], c,fx], ..., Cpppeifx]
to x's children. Leaf nodes have no children, so their c, fields are undefined.
(ii) The keys key,fx] separate the ranges of keys stored in each subtree: if k; is any key
stored ' in the subtree with root cix], then
ky < key, [x] Sk, Skey,[x)<A <key, [x1<k, .. .
{ii1) Every leaf has the saem depth, which is the tree’s height A.
{(iv) There are lower and upper bounds on the number of keys a node can contain in
terms of a fixed integer ¢ = 2 called the minimum degree of the B-trees.
a. Every node other than the root must have at least ¢-7 keys. Every internal node
other than the root thus has at least ¢ children. If the tree is nonempty, the root must
‘have at least one key.
b. Every node can contain at most 2¢-1 keys. Therefore an internal node can have at
most 2¢ children. We say that a node is fulk if it contains exactly 2¢-1 keys.
(1) (5%) What is the value of when the simplest case of B-tree occurs? In this case,
how many children does every internal node have?

(2) (10%) Please prove the following worst-case height of a B-tree: If n > 1, then for

+
any n-key B-tree T of height & and minimuim degree 22, h<log, "—21 .

(3) (5%) Write a pseudo code to implement the operation of B_TREE_SEARCH(x, k).

3. ALU Design (10%)

An ALU has two four-bit inputs, A and B, and one four-bit output C. A, B are signed
integers, represented.as two’'s complement binary numbers. The most significant bits
of A, B and C are A[3], B[3] and C[31, respectively: while the least significant bits are
Af0], B[0] and C{0], respectively. In addition, the ALU also generates two flag
signals: OV (overfiow) and LESS (less than), The ALU can be used to compare the
two inputs by performing a subtraction C=A — B. The signal LESS is settoone if A is
iess than B (zero, if not). Derive the logic equation for the signal LESS based on the
signal value of OV and/or the bit values of C.

410

15

30

(HEX)

o BIPLKREANS LS

[Py S

FEFRVE R348 & #3038

10[

15

20

25

n

4. (20%) Instguction Set

It is possible to imagine even sim- -
pler instruction sets. In this assignment, you are to consider a hypotheti-
cal machine called SIC, for Single Instruction Computer. As its name
implies, SIC has only one instruction: subtract and branch if negative, or
sbn for short. The sbn instruction has three operands, each consisting of .
the address of a word in memory:

sbn a.b,c Mem[a] = Mem(a] - Mem[bl;if (Mem{al<0) go to ¢

The instruction will subkract the number in memary location b.from the:
number in location a and place the result back in 4, overwriting the previ-
ous vaiue. If the result is greater than or equal to 0, the computer will take
its next instruction from the memory location just after the current instruc-
tion. If the result is less than 0, the next instruction is taken from memory
Tocation c. SIC has fio registers and no instructions other than sbn.

Although it has only one instruction, SIC can imitate many of the opera-
tions of more complex instruction sets by using clever sequences of shn
instructions. For example, here is a program to copy a number from loca-.
tion' to location b: ‘ '

start: sbh temp,temp,.+l # Sets temp to zerp ;
sbn temp.a, .+l . # Sets temp to. -a :
sbhn b.b, A1 ¥ Sets b to zero i ‘
stn b temp, .41 # Sets b to -temp, which is a -

In the program above, the fotation +1 means “the 4ddress after this

one,” so that each instruction. in this program goes on to the next in
sequence whether or not the tesult s negative. We assume temp to be the
address of a spare memory word that can be used for temporary results,

4.1 (10%) + Write aSIC programi to add a and b, leaving the result iri
a and leaving b unmedified. ‘
42 (10%)

*Writea SIC program to multiply a by b, putting the result
in ¢. Assume that memory location one containg the ritmber 1. Assume that:
@ and, b are greater than 0 and that it's OK to modify a:of b. (Hink; What
does this:program compute?)

¢ = 0: while (b >) ib=Db-1; ¢c=¢+ a:)

ﬁmIﬁm%ﬁ*yg % 3%

15

20

M-.ﬁm PO
(iEEX)

B
g :

——— - P L

KL | FEEAE L g Hakk
2 llr 2 Ux

7

HEME S

100

15

201

251

6. Computer Performance (20 %)

Consider two different implementations, M1 and M2, of
the satne instruction set. There are three classes of instructions {A,B,and Q) in
the instruction set: M1 has a clock rate of 400 MHz, and M2 has a clock rate of
200 MHz. The average number of cycles for each instruction class on M1 and
M2 is given in the following table:

. “o T Thied-party
C1 usage c usage
: A i _T‘_T‘T_r—*ﬁﬁ"?ﬁ 1 sox)
B " 6 | 4 0%
¢ ‘ 8 j

5 20% 30%
B : 20% 50% 20%

]

The table also contains a summary of how three different compilers use the
instruction set. C1 is a compiler produced by the makers of M1, C2 is a com-
piler produced by the makers of M2, and the other compiler is a third-party
product. Assume that each compiler uses the same number of instructions for
a given program but that the instruction mix is as described in the table,
Using C1 on both M1 and M2, how much faster can the makers of M1 claim
that M1 is compared with M2? Using C2 on both M2 and M1, how much
faster can the makers of M2 claim that M2 is compared with M1? If you pur-
chase M1, which compiler would You use? If you purchase M2, which com-
piler would you use? Which machine would you purchase if we assume that
all other criteria are identical, including costs?

Nste @ CPI = Cy('_k';g. per Tn_cr.j‘x'uJFm

15

20

25

